
1 August 1999 Delphi Informant

August 1999, Volume 5, Number 8

Cover Art By: Darryl Dennis

ON THE COVER
5 Delphi 5 — Cary Jensen, Ph.D.
It’s summer, and that means a new version of our favorite develop-
ment environment. From the IDE to Web development, from COM to
database support, from team workflow to multi-language develop-
ment, Delphi 5 has something new for every Delphi developer, as
Dr Jensen explains.

10 Delphi 5 Drill-Down — Robert Vivrette
Our Technical Editor, Mr Vivrette, delves deeper into a few Delphi 5
enhancements — specifically, improvements in the Object Inspector
and new capabilities of Delphi’s integrated debugger.

FEATURES
14 Informant Spotlight
MIDAS 3 — Dan Miser
Delphi 5 Enterprise Edition brings with it MIDAS 3, which introduces
several new components, properties, and events. Mr Miser explains the
new features, and even provides some sample code.

20 The API Calls
Network Share — Ashley Davy
Mr Davy demystifies the Windows API calls necessary to obtain network
information (e.g. available printers, a remote registry, or particular
DCOM object) on the Windows 95, 98, and NT platforms.

25 On the ’Net
Dynamic Control — Ron Loewy
Any application can provide visual HTML editing capabilities with the
Microsoft DHTML Edit Control. Mr Loewy demonstrates how to use it from
Delphi employing OLE and COM interfaces.

30 OP Tech
Rectangles — Motty Adler
Don’t shy away from procedures that take a record as an argument. Mr
Adler shows beginners and advanced developers alike that TRect isn’t so
frightening — and is great for calling many API functions.

REVIEWS
35 Marotz Cost Xpert

Product Review by Jeff Sims
38 Advantage Database Server 5.1

Product Review by Warren Rachele

DEPARTMENTS
2 Delphi Tools
42 File | New by Alan C. Moore, Ph.D.

2 August 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions
PracticalSoft Releases Components for Delphi

PracticalSoft announced the

release of three shareware com-
ponents for Delphi:
TArrayBitmap, PanoMax
Panorama, and the Organic
Shape Pack.

The TArrayBitmap class is a
descendant of TBitmap that
provides high-speed access to
24-bit bitmap pixels, making it
ideal for multimedia applica-
tions with graphic effects.

The PanoMax Panorama is a
component for Delphi 3 and 4
that renders real-time views of
panoramic (360-degree) images,
giving a virtual reality-like
immersion feeling.

The Organic Shape Pack con-
tains components that have the
ability to shape themselves
according to a bitmap used as a
mask, making them ideal for
building interfaces. The Organic
Shape Pack supports automatic
skin saving and retrieval.

PracticalSoft
Price: TArrayBitmap, US$10; PanoMax
Panorama, US$59 (compiled Delphi unit) or
US$160 (full Delphi source); Organic Shape
Pack, US$24 (Organic Shape Form), US$28
(Organic Shape Button), and US$20
(Organic Shape Image).
E-Mail: practicalsoft@usa.net
Web Site: http://practicalsoft.hypermart.net
Blaise Announces Blaise Compound Components

Blaise Software Inc.

announced Blaise Compound
Components, a set of over 50
standard, additional, and data-
aware components that have
other components attached.

A Compound Component is
an object made up of multiple
components, allowing one to
encapsulate properties, methods,
and events from many compo-
nents into one. An example of
this is a TEdit combined with a
TLabel for a caption. The user
of this new object would be able
to access attributes of both indi-
vidual components through one
compound component.

All Compound Components
are created from the same base
class, over which the developer
has control. This allows one to
add the same functionality to all
components at the same time.

Ease-of-use features include
component editors and naming
components.

Blaise Software Inc.
Price: US$200
E-Mail: sales@blaisesoftware.com
Web Site: http://www.blaisesoftware.com
SmartLine Releases DeviceLock

SmartLine, Inc. announced the

release of DeviceLock, an NT
service for restricting access to
local devices running Windows
NT. DeviceLock eliminates the
need for physical locks and has a
number of advantages. It is easy
to install and administrators
can have instant access from
the remote computers when

necessary.
In addition,

DeviceLock
allows the
administrator
of the machine
or domain to
designate user
access to flop-
py drives, other removable
media, CD-ROM drives, or seri-
al and parallel ports.

DeviceLock requires Windows
NT 4.0 (for x86 or ALPHA
platforms), 8MB of RAM, and
a hard drive with 1MB of hard
disk space.

SmartLine, Inc.
Price: US$40 for a single-user license; site
and world licenses are available.
Phone: (+7 095) 366-2193
Web Site: http://www.protect-me.com
Pervasive Delivers Crystal Reports 7 for Pervasive

Pervasive Software Inc.

announced Crystal Reports 7 for
Pervasive, a Windows-based
query and reporting tool for
software applications based on
Pervasive.SQL, providing inter-
active Web reporting, report
integration, and report genera-
tion capabilities from virtually
any data source. The application
is based on Seagate Software’s
Seagate Crystal Reports 7 desk-
top and Web reporting tool.
Crystal Reports 7 for Pervasive
enables users of applications
built on Pervasive.SQL (includ-
ing Pervasive’s Btrieve database
code) to create business tools
such as reports, lists, letters,
forms, and labels. The release
includes Java-based Web query
and analysis, support for server-
side processing, and the ability
to import legacy reports.

A copy of the Pervasive.SQL
Workstation engine ships with
Crystal Reports 7 for Pervasive
and includes Pervasive’s DDF
Ease, which makes it easier to
build, maintain, and edit the
required DDF files.

The Crystal Reports engine is
a true DLL that can be inte-
grated into Windows- or Web-
based applications to manage a
broad range of controls and
class 1 libraries, including
ActiveX (OCX) controls (16-
and 32-bit), Visual Basic
Custom controls (VBX),
Microsoft Foundation Class
Library with AppWizard for
Visual C++, Delphi VCL, and
Report Designer for Visual
Basic 5.0 and 6.0.

Crystal Reports 7 for Pervasive
offers new and enhanced features
for improved programming con-
trol and comprehensive function-
ality, including the Document
Import Tool, Field Mapping, On-
Demand Subreports, Geographic
Mapping, Running Totals Expert,
and the JavaBean Viewer.

Pervasive Software Inc.
Price: US$345 for single-user license.
Phone: (800) 287-4383 or
(512) 231-6000
Web Site: http://www.pervasive.com
IDEAL Ships Virtual Print
Engine 3.0

IDEAL Software announced it is
shipping Virtual Print Engine 3.0, its

solution for developers needing
dynamic, precise control over print-
ed output from their applications.

Virtual Print Engine provides
developers using Delphi, C/C++,

Visual Basic, Visual FoxPro, and
other languages the ability to cre-
ate preview and print reports, rich
documents, drawings, etc. by call-

ing functions during run time.
Through code, objects such as

text, lines, polygons, images, and
21 barcodes can be positioned,
rotated, and scaled with 0.1 mm

precision on any number of
pages. The vector graphics offer a
free-scalable WYSIWYG preview
and printer-independent output.

New features in version 3.0
include RTF parsing, integrated

chart objects, interactive objects,
user-defined objects with direct
access to the Windows Device
Context, export of pages to all
common image types, scale-to-
gray technology, e-mail and fax,
and more. Virtual Print Engine

3.0 is available for US$429. For
more information call +49
(0)2131 9800-23, or visit

IDEAL’s Web site at
http://www.idealsoftware.com.

http://www.idealsoftware.com
http://practicalsoft.hypermart.net
http://www.blaisesoftware.com
http://www.protect-me.com
http://www.pervasive.com

3 August 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions
Discmatic Offers Multi-drive Duplicators

Discmatic, a division of CBC

(AMERICA) Corp., introduced
two new multi-drive CD dupli-
cators: the MDX7000 and
MDX3000. The MDX7000 can
produce up to 21 full CDs per
hour, and the MDX3000 can
produce up to nine per hour.
The MDX7000 and

MDX3000 tower CD duplica-
tors combine Discmatic’s EZ-
ONE controller engine with
seven and three CD drives,
respectively. A new SCSI bus
allows a faster data transfer rate
and permits copying of up to
seven discs simultaneously. In
addition, both units can copy
directly from CD to CD rather
than having to work through the
hard drive.
The core logic for both units is

stored on an advanced flash
ROM. In addition, the internal
firmware can be upgraded via a
firmware CD or by downloading
the firmware file from the
Discmatic Web site.

Features include Image
Management, which allows files
to be loaded, deleted, renamed,
and undeleted with ease, and
Hard Disk Management for effi-
cient use of hard disk capacity.

An Audio Compilation feature
allows selected tracks from a vari-
ety of discs to be assembled and
stored on the internal hard drive
as a CD image. From there, a
new master is created. For larger
duplication jobs, Discmatic will
offer the option of connecting up
to eight MDX7000 and
MDX3000 duplicators via a
SCSI channel to build a net-
worked duplication system. Eight
MDX7000s connected in this
way would be capable of produc-
ing up to 56 discs at once.

Discmatic
Price: MDX3000, from US$3,035 with one
read drive and two write drives; MDX7000,
from US$4,835 with one read drive and six
write drives.
Phone: (800) 422-6707
Web Site: http://www.discmatic.com
Epsilon Squared Releases InstallWatch 1.1

Epsilon Squared, Inc. released

InstallWatch 1.1, a Windows
95/98/2000 and Windows NT
4.0 application that records all
changes made to a PC during
installation of software from the
Web, CD-ROMs, or floppies.
InstallWatch 1.1 can also record
all modifications made during
configuration changes and hard-
ware additions.

InstallWatch 1.1 will deliver
detailed information about the
specific actions taken during
software installations. This
information is stored perma-
nently and can be reviewed with
an Explorer-like interface, print-
ed, or exported to HTML for-
mat for posting to an intranet.

InstallWatch 1.1 records all addi-
tions, deletions, and modifications
to the Windows registry, files, and
INI files. InstallWatch 1.1 will
monitor a system silently until it
detects the installation of a soft-
ware application. InstallWatch’s
InstallWizard will immediately
begin and guide the user through
the process of capturing the
details of the installation.

InstallWatch 1.1 can also be
used in a manual mode to
detect any changes to a PC.
Users about to install hardware
that will update drivers or set-
tings can use InstallWatch 1.1
before and after the hardware
install to save a record of the
changes in the InstallWatch
database. Network administra-
tors can use the manual mode
to detect changes to the server
every day, logging activities to
the InstallWatch database.

Epsilon Squared, Inc.
Price: US$79 per license.
Phone: (941) 752-1470
Web Site: http://www.installwatch.com
Xceed Announces Xceed Zip Compression Library Version 4.0

Xceed Software Inc. announced

the release of version 4.0 of the
Xceed Zip Compression Library.
The heart of the new library con-
sists of a new, multi-threaded ZIP
compression engine.

Version 4.0 offers features such
as reading/writing multi-part
ZIP files directly to the hard
drive, streaming ZIP and unzip
compression, custom
include/exclude filters, Unicode
API calls when running on NT,
reading/writing Unicode file-
names and NT file attributes
and security permissions, auto-
matic ZIP file error recovery,
file previewing, which combines
the entire library into one fully
self-contained ActiveX control.

Xceed Zip v4.0’s new multi-
threading ZIP compression engine
offers faster overall zipping perfor-
mance. It supports both single-
threaded (STA) and multi-thread-
ed apartment (MTA) models, and
has low memory requirements.

Xceed Software Inc.
Price: US$299.95; US$399.95 with the
Xceed Zip Self-Extractor Module version 1.2.
Phone: (800) 865-2626 or (450) 442-2626
Web Site: http://www.xceedsoft.com

http://www.discmatic.com
http://www.installwatch.com
http://www.xceedsoft.com

4 August 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions
DBI Technologies Announces Solutions::Explorer 1.0

DBI Technologies Inc.

announced the release of
Solutions::Explorer 1.0, the
latest product in the
Solutions::Series. At the heart
of the package is the ctExplorer
ActiveX control, which makes
creating multiple view forms
easier. This meta-component
combines a tree view, list view,
html view, list bar, tabs, and
splitter objects into a single
component.
The Solutions::Explorer

package includes other compo-
nents, such as ctButton, an
enhanced transparent button
control for creating Explorer-
type toolbars; ctFile, a com-
mon Open/Save File dialog
box control; ctFrame, a frame
control for creating toolbars;
and ctHypLnk, a hyperlink
label control for embedding
URLs and other links.
Solutions::Explorer is compli-

ant with multiple visual plat-
forms, and recreates the
Microsoft standard look and feel
for any application.

DBI Technologies Inc.
Price: US$399 for a single developer
(introductory offer; prices may change).
Phone: (800) 670-8045
Web Site: http://www.dbi-tech.com
Albert’s Ambry Presents BlackBoard Backup 5.9

Albert’s Ambry announced

they are offering BlackBoard
Backup 5.9, a 32-bit file backup
and archive with high compres-
sion and disk spanning.
BlackBoard is designed to
replace the backup utilities that
ship with Windows 95/98/NT.

BlackBoard Backup 5.9 allows
you to take advantage of high
LZH5 compression, password
protection, and disk spanning.
You can also back up files that
have changed (incremental), as
well as test file integrity.

Simply drag and drop the files
and folders to be backed up.
Select as the backup destination
any drive letter including floppy,
removable, and networked drives.
The program offers a display of
backup size and the available
space on the destination drive.
The latest release of BlackBoard

Backup also includes IntelliBak
to help find files that need to be
backed up, and AutoBak,
which can be used with a task-
scheduling program to back up
files automatically.

Albert’s Ambry/BlackBoard Software
Price: US$29
E-Mail: dalin@blackboardsoftware.com
Web Site: http://www.blackboardsoftware.
com or http://www.alberts.com/
authorpages/00000492/Prod_471.htm
Softel Releases SftTree/VCL 4.0

Softel vdm, Inc. released

SftTree/VCL 4.0, a new version

of its tree control for Windows
specifically designed for use with

Delphi and
C++Builder.

The new ver-
sion includes
support for vir-
tual lists (up to
two billion
items), a vertical
splitter bar
between
columns, Right-
To-Left Reading
support for
international
Windows ver-
sions, full multi-
column support
with cell colors,
cell fonts and
cell bitmaps, ScrollTips dis-
played during vertical scrolling,
column header ToolTips, a back-
ground bitmap, item searching
based on typed input, and more.

SftTree/VCL 4.0 offers hierar-
chical data displays, with such
features as multiple columns,
multiple selection, multiple
text lines per item, cell word-
wrap, built-in row and column
headers, user-resizable columns,
column re-ordering, grid lines,
3D item display, etc.

Softel vdm, Inc.
Price: US$199 for a single-developer
license (includes manual, technical support,
and downloadable maintenance updates).
Phone: (941) 505-8600
Web Site: http://www.softelvdm.com

http://www.dbi-tech.com
http://www.blackboardsoftware.com
http://www.blackboardsoftware.com
http://www.alberts.com/authorpages/00000492/Prod_471.htm
http://www.alberts.com/authorpages/00000492/Prod_471.htm
http://www.softelvdm.com

5 August 1999 Delphi Informant

On the Cover
Delphi 5

By Cary Jensen, Ph.D.

Figure 1: Delphi 5 toolbars.
Delphi 5
A Quick Look at What’s New

It’s been 13 months since Delphi 4 shipped, which means it’s time for another edition
of the best development environment for Windows. If this is what you’ve been think-

ing, then you were not surprised when borland.com announced the latest and greatest
version of its flagship programming tool at their 10th annual conference in Philadelphia
this July. Even if this thought had never crossed your mind, you’ll be happy with the
enhancements of this release. From the IDE (integrated development environment) to
Web development, from COM to database support, from team workflow to multi-
language development, Delphi 5 has something new for every Delphi developer.
In this article, we’ll take a tour of the new features of
Delphi 5. As you might imagine, however, this arti-
cle is based on a beta version. Consequently, the fea-
tures that ship with the official release may be differ-
ent. Also unavailable at this time is information con-
cerning which versions of Delphi 5 will have particu-
lar features described here. For example, you can
probably safely assume that Delphi 5 Enterprise (the
new name for Delphi Client/Server) will have most,
if not all, of these features. The Professional edition
will certainly not have everything described here.

There’s good news on another front as well — that
of stability. Delphi 4, for all of its fabulous
enhancements, was a disappointment when it came
to stability. Even after three update packs (the sec-
ond one measuring more than 27MB for the
Client/Server edition), Delphi 4 continues to be an
embarrassment. Delphi 5 is a welcome relief. It’s far
more stable, even in the beta version used for this
article, than Delphi 4. In short, Delphi 5 should go
a long way to repairing the good name of Delphi.

Enhanced IDE
The obvious updates to a development tool are
those that appear in the IDE. As you can see in
Figure 1, Delphi’s toolbars have again received a
facelift, albeit a much smaller one than we saw
between Delphi 3 and Delphi 4.
Desktop settings. Delphi 5 permits you to create a
number of different desktop layouts and save them
for easy retrieval. A desktop layout consists of the
various windows and non-modal dialog boxes that
are open within Delphi. For example, by default, the
Code Explorer is docked in the Editor. You might
prefer that it appear undocked by default. No prob-
lem. Undock the Code Explorer, move it to where
you want it to appear, then click the Save current

desktop button on the Desktops toolbar. Delphi will
ask you to name the desktop setting, and then add it
to the Desktop speed settings combo-box. Anytime
you want to display this custom desktop layout, sim-
ply select the setting you saved.

Most developers will have several settings they pre-
fer, depending on the task at hand. Delphi 5 per-
mits you to designate one of these settings as your
default debugging desktop. This desktop configu-
ration will automatically be loaded when you use
the integrated debugger. Your previous desktop
setting is restored once you exit the debugger.

Updated Object Inspector. There have been few
visible changes to the Object Inspector over the
years — until now. Delphi 5’s Object Inspector is
radically different in two ways. The most obvious
is the inclusion of images in some property fields.
For example, the field associated with a color

Figure 2: The Object Inspector can display
custom images, such as a selected color.

On the Cover

Figure 3: The View menu of
the Object Inspector’s right-
click menu.

: The Exploring Classes dialog box now sports a completely
k.
property now not only shows the name of the selected color, it dis-
plays the color as well (see Figure 2). This reflects updates to
Delphi’s tools API, where developers creating property editors can
customize what is drawn in the Object Inspector. (See Robert
Vivrette’s article, “Delphi 5 Drill-Down,” on page 10 for more
information on this feature.)

Another new feature of the Object Inspector is revealed if you closely
inspect Figure 2. At the bottom of this Inspector is the message: 2
hidden. This message is related to views and arrangements, which pro-
vide you with alternative ways to work with the properties in the
Object Inspector. To control which properties are visible in the Object
Inspector, right-click it and select View. The View menu, shown in
Figure 3, includes a list of checkable menu items that you can use to
view or suppress individual property categories in the Inspector. This
can be particularly handy when you are focusing your design efforts on
a particular type of property, and don’t want to be distracted by others.

Normally, the properties you’re viewing are displayed in
alphabetical order in the Object Inspector. If you right-
click the Object Inspector and select Arrange | by

Category, properties will appear under expandable
nodes, as shown in Figure 4. The view you select is
saved with your desktop settings.

Updated dialog boxes. A number of the dialog boxes
have been improved and enhanced. For example, the
Project Manager dialog box now supports drag-and-
drop operations. For instance, you can drag a file from
the Windows Explorer and drop it into the Project
Manager to add it to a project. Also, files can be
dragged from one project to another.

Another major update is to the Exploring Classes
dialog box (see Figure 5). This dialog box, which has
seen very few changes since Delphi 1, has been radical-
ly re-designed. Although I miss some of the features
that were removed, such as the ability to explore all
units involved in the last compile, the new browser

Figure 5
new loo
6 August 1999 Delphi Informant
provides you
with a
structured
means of
exploring
your project’s containers (Forms, Data Modules, and Frame).

Data Module Designer. One new feature likely to be high on the
“favorites” list of a good many Delphi developers is the Data
Module Designer. Data modules are no longer simply non-visual
forms. Instead, the data module’s role as a repository for data access
components has been greatly enhanced by a new interface that pro-
vides you with visual feedback concerning the roles and configura-
tions of the contained components.

Figure 6 displays a simple data module containing several data access
components. The Components page, on the right side of this window,
shows the components as they previously appeared in a data module

Figure 4: The Object Inspector can display proper-
ties by category.

On the Cover
in earlier versions of Delphi. On the left is the tree view. Here you can
see at a glance the major settings defined for your components,
including the alias (DatabaseName) and table names assigned to the
tables, and the DatabaseName associated with the database.
7 August 1999 Delphi Informant

Figure 6: Delphi 5’s new Data Module Designer.

Figure 7: The Data Diagrams page of the Data Module Designer.

Figure 8: The Key Mappings page of the Editor Properties
dialog box.
The real fun begins with the Data Diagrams page (see Figure 7),
which can be used to define relationships between your various
data access components, and can display this relationship visually.
In Figure 7, a one-to-many relationship has been defined, repre-

sented by a line that connects CustTable to SalesTable.

Customizable key options in editor. Code Editor options are
now controlled in a separate dialog box, instead of being part
of the Environment Options dialog box. This new dialog box,
which is displayed by selecting Tools | Editor Options, includes a
new page named Key Mappings, shown in Figure 8. In addi-
tion to the previously available key mappings are the new
Internal (which employs standard CUA keystroke mappings)
and Visual Studio key mappings.

Delphi 5 also permits you to create custom key mappings.
Doing so, however, is an involved process, employing
Delphi’s OpenTools API. New key mappings must be
defined in code and registered with an installed design-time
package using AddKeyboardBinding. Once a keyboard map-
ping has been added, it can be installed using the Key
Mappings page of the Editor Properties dialog box.

See the example units in the \Demos\Key Mappings directo-
ry for more information. There you will find the source file
for the Buffer List key mappings listed in the Enhancement
modules list box shown in Figure 8.

Command-line options. Although not strictly an IDE
feature, Delphi 5 does support a number of new com-
mand-line options. These options include the ability to
load Delphi with a particular project active, suppress the
splash screen, and display information about heap utiliza-
tion in Delphi’s title bar. Additional command-line
options permit you to control debugging and compiling
features. See the online Help for a full listing of the new
command-line options.

TeamSource
Another major addition to Delphi 5 is TeamSource.
TeamSource, which will surely be included only in the

Enterprise edition, is a team project workflow tool that ensures
version control and coordinates efforts of development teams.
TeamSource replaces PVCS as the Delphi team development tool.

To-Do Lists
Another one of the completely new features is the To-Do List.
The To-Do List permits you to identify, categorize, and manage a
list of actionable items, and follow them through to their com-
pletion. These items can be either project wide, or associated
with a specific unit.

Typically, project-wide To-Do items are directly added to the To-Do
List dialog box, shown in Figure 9. This dialog box can be displayed
by selecting View | To-Do List. Using the To-Do List right-click menu,
you can add, edit, filter, sort, and otherwise manage your To-Do List.

To-Do List items can also be added directly to source code. For
example, adding the following comment to a unit causes an item to
be added to the To-Do List dialog box:

// TODO 2 -oDavid -cDocumentation :Include screenshot of
// MRS dialog box

Figure 9: The To-Do List dialog box.

Figure 10: The ADO page of Delphi 5’s Component Palette.

Figure 11: The Interbase page of the Component Palette.

On the Cover
If you subsequently use the To-Do List dialog box to mark this item
completed, or edit any other element of the item, the embedded source
code entry updates automatically to reflect this change in status.

New Frame Containers
The Forms unit has a new visual container class: TFrame. Frames are
similar to forms in that they can be created as stand-alone containers for
UI elements of your applications. However, they have the additional
advantage of being easily embedded within existing forms or even other
frames. TFrame, like TForm, descends from TScrollingWinControl.

After adding a new frame to a project, you can embed it into a form
using the Frames component, which appears as the first component
on the Standard page of the Component Palette. This item can be
seen in Figure 1.

Database Enhancements
Some of the more exciting changes in Delphi 5 are associated with
database development. These enhancements include support for
Microsoft’s ActiveX Data Objects (ADO), a major overhaul of
MIDAS, and support for connecting directly to InterBase without
the use of the Borland Database Engine (BDE).

ADO consists of a set of ActiveX controls that connect to data using
Microsoft’s COM-based OLE DB technology. Delphi 5 provides you
with a series of components that encapsulate calls to underlying
ADO components without requiring you to explicitly import their
interfaces. These components are on the ADO page of the
Component Palette (see Figure 10), and include ADOConnection,
ADOCommand, ADODataSet, ADOTable, ADOQuery, and
ADOStoredProc. These components can be used with Delphi’s
already rich set of data-aware controls.

Applications that make use of ADO components to access data do not
necessarily require the BDE. They do, however, require that the ADO
8 August 1999 Delphi Informant
run-time environment, available for free from Microsoft,
be installed. Nonetheless, Delphi 5’s support for ADO pro-
vides developers with yet another way to access data using
technology that is part of a developing industry standard.

As mentioned earlier, MIDAS has also undergone a dramat-
ic transformation. These changes permit MIDAS to func-
tion effectively in a wider range of scenarios, including
being embedded as an MTS (Microsoft Transaction Server)
object. The largest of these changes involve making MIDAS
stateless. In earlier versions of MIDAS, the provider compo-
nents persisted information about the client connection.
This information is now managed by the client, permitting
the MIDAS server to be shut down and restarted as needed,

without a loss of crucial state information. The changes to MIDAS run
much deeper, however. See the article “MIDAS 3” by MIDAS guru
Dan Miser on page 8 for a more detailed discussion.

The ADO and MIDAS technologies provide a mechanism for
Delphi developers to distribute client applications without the BDE.
If you’re an InterBase developer, Delphi 5 provides you with yet
another means of doing this. The Interbase page of the Component
Palette, shown in Figure 11, includes a large number of components
that permit you to attach directly to an InterBase server. Like the
ADO components, Delphi 5’s InterBase components integrate
directly with Delphi’s data-aware controls.

Internationalization
Developers needing to localize versions of their applications will also
not be disappointed. The Resource DLL Wizard, first introduced in
Delphi 4, gets additional support in the form of the International
Translation Environment (ITE). This tool-set provides you with a
means of managing translation resources, and even share them across
multiple applications. This feature appears to be targeted at the
Delphi Enterprise environment, but will reportedly be available sep-
arately for license for other Delphi 5 versions.

DFM Resources as Text
Delphi 5 now gives you control over whether forms should be saved
as binary files, as they were in previous versions, or simply as text.
In fact, the new default is to create forms as text, relying on the
compiler to generate the DFM windows resource files before link-
ing it into the DCU. The Preferences page of the Environment
Options dialog box (see Figure 12) includes a checkbox that per-
mits you to define whether forms are created as text by default. You
can also control this by right-clicking a particular form and check-
ing or unchecking the Text DFM option.

Control Over Auto-created Forms
Figure 12 also reveals another option that will be welcomed by a
good number of Delphi developers. Delphi 5 can now to be config-
ured to not add each and every newly created form to the auto-create
list. When Auto create forms is checked, Delphi 5 acts like previous
versions, auto-creating every new form. When Auto create forms is not
checked, only the main form is auto-created. All other forms will
appear in the Available forms list of the Project Options dialog box.

Web Component Updates
Delphi 5 includes a number of new enhancements for building Web
and Internet-based applications. For one, the NetMasters Internet com-
ponents have been moved to their own page on the Component
Palette. No longer sharing the Internet page with the Web Broker com-
ponents, the NetMasters components now appear on the FastNet page.

Figure 12: The Preferences page of the Environment Options
dialog box.

On the Cover

Figure 13: The Servers page of the Component Palette.

Figure 14: Use this dialog box to apply updates.
HTML support has also been updated. The NetManage HTML
ActiveX control no longer appears on the Component Palette
(although it can be installed if you need it for backward compatibili-
ty). Instead, Delphi 5 provides the WebBrowser component on the
Internet page. This component makes use of the Microsoft Internet
Explorer ActiveX control.

For developers using Active Server Pages (ASP), Delphi 5 includes a
new Active Server Object Wizard. This wizard creates a Component
Object Model (COM) server that can be used to define dynamic
content for a Web server, in much the same way the Web Broker
components do. These automation objects can be invoked from ASP
pages loaded from Microsoft’s Internet Information Server.

COM Enhancements
Speaking of COM, Delphi 5 includes a number of features that sim-
plify and improve support for the standard. The most obvious of
these is Delphi’s support for COM servers as components.
Specifically, a COM server can be imported as a component, mak-
ing its use within your applications much easier. Plus, a number of
standard COM servers have already been imported for your conve-
nience. These appear on the Servers page of the Component Palette,
and include Word, Excel, PowerPoint, and Outlook, to name a few
(see Figure 13).

Another major update to Delphi 5’s support for COM is the
Implementation file update wizard (see Figure 14). This dialog box
is displayed after you make changes to the type library of a COM
server using the Type Library Editor. You use it to control the
updates that will be automatically applied to the CoClass, i.e. the
class that implements your interface.
9 August 1999 Delphi Informant
Also, Delphi now supports the sparse vtables generated for COM
servers by Visual Basic (VB). When you import a VB-created COM
server, Delphi automatically detects missing entries in the interfaces
and generates placeholder stubs for the missing methods.

Other Enhancements
Finally, there are a number of updates that don’t fall into these cate-
gories. For example, Delphi 5 includes several new wizards in its Object
Repository. One of these, the Control Applet Wizard, allows you to eas-
ily create applets that appear on the Windows Control Panel. Another,
the Console Wizard, permits you to create simple console applications.

There have also been a number of enhancements to Delphi’s already
powerful debugger. For example, in addition to the CPU window added
in Delphi 4, Delphi 5 also includes an FPU window. The FPU window
displays the content of the floating point processor. In addition, Delphi’s
debugger can be attached to an already running process. (Again, see
Robert Vivrette’s article “Delphi 5 Drill-Down” for more details.)

Conclusion
Delphi 5 has everything that Delphi 4 has, and more. It includes an
impressive array of new features and enhancements that make it a
must-have for Delphi developers. In addition, it goes a long way to
restoring Delphi’s reputation as the most reliable Windows develop-
ment environment. ∆

Cary Jensen is president of Jensen Data Systems, Inc., a Houston-based database
development company. He is co-author of 17 books, including Oracle JDeveloper
[Oracle Press, 1998], JBuilder Essentials [Osborne/McGraw-Hill, 1998], and
Delphi in Depth [Osborne/McGraw-Hill, 1996]. He is a Contributing Editor of
Delphi Informant, and is an internationally respected trainer of Delphi and Java.
For information about Jensen Data Systems consulting or training services, visit
http://idt.net/~jdsi, or e-mail Cary at cjensen@compuserve.com.

http://idt.net/~jdsi

10 August 1999 Delphi Informant

On the Cover
Delphi 5 / IDE

By Robert Vivrette
Delphi 5 Drill-Down
Object Inspector and Debugging Enhancements
Delphi 5 should be out by the time you read this — or at least pretty close. This latest
version adds all sorts of new capabilities. This article will look at a few enhance-

ments — specifically, improvements in the Object Inspector and new capabilities of
Delphi’s integrated debugger.
Object Inspector Enhancements
The Object Inspector has undergone a significant
facelift in capability and appearance in Delphi 5.
Of course, end users won’t see or appreciate these
enhancements, but the developer certainly will.
The main changes fall into two groups: property
categories and owner-draw support.

Property categories. Over the past few versions of
Delphi, standard components in the VCL have con-
tinued to gain properties, such as action lists,
anchors, constraints, multiple monitor support, and
docking. For example, the TForm class has gained
16 new properties and 14 new events since Delphi
1. These additions are great; however, their appear-
ance fills up the Object Inspector and requires a bit
more hunting to find the right property or event.

Inprise’s solution to this is the spiffy new property
categories feature. In a nutshell, this is a way of fil-
tering properties you want to see in the Object
Inspector. Properties fall into one or more of the
following categories:

Action
Data
Database
Drag, Drop, and Docking
Help and Hints
Layout
Legacy
Linkage
Locale
Localizable
Miscellaneous
Visual
Input

When you right-click in the Object Inspector,
two sub-menus become available (see Figure 1).
The View sub-menu allows you to select which
property categories will be shown in the Object
Inspector. It also includes menu items that allow
you to select all or none of the properties, as
well as to toggle the currently selected proper-
ties, i.e. those that were checked are now
unchecked; those that were unchecked are now
checked. And just so you don’t think you’re

On the Cover
looking at all the properties when some are hidden from your
view, there is an optional status bar at the bottom, indicating the
number of properties that are being filtered out of view.

The Arrange sub-menu
gives you options of
viewing properties by
11 August 1999 Delphi Informant

Figure 2: View by name in the
Object Inspector.

Figure 3: View by catego
Object Inspector.

Figure 1: Accessing the Ob
and Arrange sub-menus.
Name or by Category. The default view is by name, which is the
style that we’re all used to (see Figure 2).

Viewing the properties by category produces a completely different
look for the list (see Figure 3). To illustrate the organizational
advantages, I’ve collapsed some of the nodes and opened up oth-
ers. The advantages to this layout are subtle, but quite handy once

you figure out when to use them. For
example, when you’re working on the
design of a form, simply turn off all cate-
gories and select the Visual category only,
which limits the properties shown to only
those relating to its appearance and/or
location on a form. When you’re dealing
with the database side of an application,
you can show only database-related prop-
erties, and so on.

An interesting side effect to all this is the
fact that properties can reside in more than
one category. For example, the Layout and
Visual categories have a number of proper-
ties in common, such as Left, Top, Width,
Height, and Align. As you would expect,
changing a property in one category
instantly shows its new value in any other
category in which it appears. Personally, I
love the new look of the category style for
the Object Inspector. Organizing the prop-
erties by function, rather than alphabetical-
ly, makes them much easier to work with.

As a bonus, the property categories are easily
available to component developers. This means
components you develop can take advantage of
the same capabilities by registering properties
under existing property categories, or by creating
entirely new categories. There is a wealth of new
material supporting property categories in the
DsgnIntf.pas unit.

Owner-draw support in the Object Inspector.
Another enhancement to the Object Inspector is the
addition of owner-draw support. In short, this means
that certain properties will be able to display their
values graphically rather than textually. For example,
instead of seeing only clRed for a Color property, you
can now also see a small swatch of the color. This
capability is extended across several other properties,
such as Cursor (see Figure 4), Brush and Pen styles,
and ImageIndex. An important, but subtle, detail is
that the Color property shows the real color constants
currently defined on your system.

The owner-draw capabilities are a part of a revised
property editor system that allow component develop-
ers to determine their own owner-draw properties. In
addition to its regular value, a property now also has a
“visual” value that can be represented in a way the
component developer wishes. Inprise has started out
hitting the big ones (as mentioned earlier), but I could
see additional owner-draw properties showing up in
third-party products. Just off the top of my head, I

ry in the

ject Inspector’s View

On the Cover

Figure 5: Specify breakpoint actions in the Source Breakpoint
Properties dialog box.

ure 4: Now you can see the
rsors (and many other things)
ailable for use.
could see the Font property rendering the real appearance of a type
face as well as glyph, picture, and icon properties showing a thumb-
nail of a selected image.

Debugging Enhancements
The integrated debugger in Delphi 5 has also undergone a signifi-
cant overhaul, with most changes having to do with the triggering
and actions taken by breakpoints. These enhancements fall into four
categories: breakpoint actions, breakpoint groups, IDE command-
line options, and miscellaneous enhancements.

Breakpoint actions. Before Delphi 5, breakpoints did only one
thing: break out of execution while activating the debugger. Delphi
5’s new breakpoint actions add a whole new set of actions that can
occur when your code reaches a breakpoint:

Break. This is pre-Delphi 5 behavior. When a break action is
specified, the program halts execution and activates the debug-
ger at that line of code.
Log Message. This action sends a text message to the debugger’s
event log. Programmers can view this log by selecting View |

Debug Windows | Event Log from the main menu.
Log Expression. This is similar to the Log Message action,
but allows you to specify an expression whose result will be
written to the event log. This will allow you to calculate
intermediate values from variables in use, and save their
states in the event log.
Eval Expression. This is the same as Log Expression, but
nothing is written to the event log. The only real reason to
evaluate an expression, and not to write the result, is to trig-
ger what Inprise calls “side effects,” namely the extra behavior
that might occur (due to a read access method) while access-
ing a component property. There is also an option in the new
breakpoint system that enables or disables these side effects.
Enable Group. This action enables the specified breakpoint
group.
Disable Group. This action disables the specified breakpoint
group.

Breakpoint actions are specified in the enhanced Source
Breakpoint Properties dialog box (see Figure 5), which you can
now access directly by right-clicking on the breakpoint glyph in
the Code Editor’s gutter. In Delphi 4, it was necessary to call up
the Breakpoint list to access a specific breakpoint’s properties.
While we’re on the subject, the Breakpoint list has also been
revamped to include columns showing each breakpoint’s assigned
actions, groups, and so on.

But wait — there’s more! Breakpoint actions aren’t a “please
pick one action” arrangement. Rather, you can specify any or
all actions to occur when a breakpoint is reached. This will
allow you to perform any number of the following when a break-
point is reached:

Stop execution and activate the debugger
Log a message indicating where you are
Write out the result of a particular variable
Activate a group of additional breakpoints

As you can see, you can get fairly sophisticated behavior out of the
new system.

Breakpoint groups. As mentioned earlier, breakpoints can be
assigned to user-defined groups for specific purposes. These
groups can then be enabled or disabled, either manually from
12 August 1999 Delphi Informant
within the IDE, or pro-
grammatically as other
breakpoints are
encountered.

This adds a powerful
new ability to debug-
ging. Before this addi-
tion, developers had
only two choices:
remove breakpoints
that were no longer
needed, or disable each
one manually by visit-
ing each in the editor
or the Breakpoint list.
Developers can now
establish breakpoints
throughout their code
and leave them disabled
as a group until they’re
necessary. Then, by
enabling the group, all
these breakpoints
become active.

As previously men-
tioned, the triggering
of a breakpoint can
enable or disable other
groups. As a result, if

Fig
cu
av

Figure 6: A tooltip, triggered by pausing the mouse over a
breakpoint glyph, describing a breakpoint and its actions.

Figure 7: A list of currently running processes.

On the Cover
your code detects a certain condition, it can enable breakpoint
groups elsewhere.

IDE command-line options. To assist in debugging certain conditions,
the IDE now supports some new command-line options. A few of the
more significant ones include:

Heap Monitor (-hm). This switch displays information in the
IDE title bar regarding the amount of memory currently allocat-
ed through the memory manager.
Heap Verify (-hv). This switch adds validation of the heap mem-
ory. Errors are displayed in the IDE’s title bar.
Auto-build (-b). This switch is used when a project or project
group is also specified on the command line. In this case,
the IDE starts, the project is loaded, an automatic build is
performed, then the IDE exits. This is useful for doing
command-line builds.
Auto-make (-m). Same as Auto-build, but performs a standard
compile (make) rather than a full build.
OutputFile (-o<filename>). When used with the Auto-build or
Auto-make option, this switch writes out Errors, Warnings, and
Hints to the specified file.
Debugger options. In addition, there are several options specifi-
13 August 1999 Delphi Informant
cally related to the debugger. A couple of these switches make it
possible to load a specified file into the debugger, attaching to a
debug process by ID, Event ID, etc.

Miscellaneous debugging enhancements. In addition to breakpoint
actions and groups, there is a plethora of miscellaneous improve-
ments in the debugging area. These include:

Breakpoint tooltips. By pausing the mouse over a breakpoint
glyph in the gutter, you now get a tooltip that explains what the
breakpoint is and what actions will be performed when it’s trig-
gered (see Figure 6).
Attach to Process. A menu item under the Run menu that
allows you to debug a process that is currently running, i.e.
not your current process. You’re presented with a list of all
processes currently running, and allowed to attach to any of
them (see Figure 7). Of course, it probably won’t mean any-
thing to you unless it’s your own process and there’s debug-
ging information available in that process.
Run Until Return. Also under the Run menu, this is a simple
enhancement, but a real time-saver. When you’re running a
debugging session and you stop on a breakpoint deep within
a routine, this action will cause the application to run nor-
mally until the current routine returns to its caller. In sim-
pler terms, if you accidentally single-step into a routine and
you want to get back to the line you entered from, this is the
command to do it. Also, if you’re content that the code is
performing normally in this function and you want to imme-
diately get back out to continue debugging, Run Until Return

saves you from having to find the end of the function and
using 4 to run to that point.
Debug Inspector. Used primarily from within a watch list, this
allows finer control over the inspecting of variables. You can
view the registers involved, perform typecasts of the data,
change the variable’s value, etc.
Process Properties. This option, accessible from the Thread Status
dialog box, allows you to change temporary debugging options
for a particular process.
FPU Window. Similar to the standard CPU Window, this dia-
log box lets you look at the contents of the Floating Point Unit
(FPU) on your computer. It gives you additional insight on
MMX-specific information, FPU Registers, Control Flags, and
Status Flags, to name a few.

Conclusion
As a hard-core programmer, I really appreciate it when a develop-
ment tool adds features to make my job easier. I’m happy to report
that Delphi 5 doesn’t disappoint in this area. The enhancements to
both the Object Inspector and the debugging facilities are a joy to
use, and make an already great product that much better. ∆

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached via e-mail at RobertV@mail.com.

Informant Spotlight
MIDAS 3 / Distributed Applications / Multi-tier Applications

By Dan Miser

14 August 1999 Delphi Informant
MIDAS 3
Delivers Robust, Efficient, Multi-tier Applications

MIDAS has grown and matured considerably since its initial release two years ago.
The excitement of being able to distribute data and create thin clients was over-

powering. With each release, new features have been added to make it easier to create
more complex applications and solve business problems more efficiently. MIDAS 3
proves to be no exception.
Note: This article was written with a pre-release copy of Delphi 5.
Features are subject to change prior to the official release of
Delphi 5. Consult the manual for confirmation of the features
that made it into the release version. The code for this article
will be made available shortly after the release of Delphi 5 (see

end of article for details).

New Events, Properties, and Components
MIDAS 3 introduces several new components, properties, and
events. See the table in Figure 1 for a brief overview of these new
features. However, there are more changes to MIDAS than first
appear when unwrapping the package. The big changes we’ll
cover in this article are:

No more IProvider
No more TProvider
TSocketConnection changes
RDM pooling

Threaded server changes
Introducing TWebConnection
Web MIDAS client
Miscellaneous changes

No More IProvider
While new components are always great, the most

significant change found in MIDAS 3
is the removal of the IProvider inter-

face. IProvider has been central to
all MIDAS applications since

MIDAS first hit the streets. You
would export the IProvider interface

of a TDBDataset from a Remote
DataModule (RDM), and the client and

server applications would talk to each other
using the IProvider interface.

Name Description

TWebConnection Allows MIDAS traffic to be sent using HTTP.
TXMLBroker Interfaces between a MIDAS application server and MidasPageProducer.
TMidasPageProducer Provides the ability to use MIDAS application servers from HTML.
TSocketConnection. Specifies whether or not callbacks are supported for TSocketConnection.
SupportCallbacks

TCustomProvider

Exported Identifies which providers are exported from the RDM.
OnGetTableName Ease-of-use event to specify which table will be updated.

TCustomProvider Allows persistent state information to be ...

AfterApplyUpdates sent to the client.
AfterExecute sent to the client.
AfterGetParams sent to the client.
AfterGetRecords sent to the client.
AfterRowRequest sent to the client.
BeforeApplyUpdates retrieved from the client.
BeforeExecute retrieved from the client.
BeforeGetParams retrieved from the client.
BeforeGetRecords retrieved from the client.
BeforeRowRequest retrieved from the client.

TCustomProvider.Options

poAllowMultiRecordUpdates Permits multiple records to be updated at once.
poDisableInserts Stops inserts from happening on the client.
poDisableEdits Stops edits from happening on the client.
poDisableDeletes Stops deletes from happening on the client.
poNoReset Ignores flag for resetting provider.
poAutoRefresh Automatically refreshes the ClientDataset after ApplyUpdates.
poPropogateChanges Sends changes that occur on the application server back to the client and merges them.
poAllowCommandText Ability to send new SQL from the client to the server.

TClientDataset Allows persistent state information to be ...

AfterApplyUpdates retrieved from the server.
AfterExecute retrieved from the server.
AfterGetParams retrieved from the server.
AfterGetRecords retrieved from the server.
AfterRowRequest retrieved from the server.
BeforeApplyUpdates passed to the server.
BeforeExecute passed to the server.
BeforeGetParams passed to the server.
BeforeGetRecords passed to the server.
BeforeRowRequest passed to the server.

Figure 1: New components, properties, and events found in MIDAS 3.

Informant Spotlight
While this was a good model, it introduced the overhead of
“state” in your application. A stateful application is one that
remembers something about the previous call. For example, if
you set ClientDataset.PacketRecords=5, the server needed to
keep track of how many records have been sent to each client,
introducing a stateful application. In contrast, stateless program-
ming is on everyone’s mind these days. With Microsoft preaching
stateless programming as a way of life for MTS components, it’s
bound to get even more exposure.

So, with IProvider out of the picture, how do client and server com-
municate? Simple. We’ll use the IAppServer interface instead. Looking
at the listing in Figure 2, you’ll notice many similarities between
IProvider and IAppServer. The big difference is that IAppServer reduces
the number of round-trip calls required to complete any given task,
and it has no state information. You can still maintain state informa-
tion on the client, but the server will be stateless. This is key for envi-
ronments such as MTS that all but require stateless programming.
15 August 1999 Delphi Informant
Practically speaking, this means that instead of right-clicking a
TDatasetProvider component and selecting Export Provider from

Data Module, you set TDatasetProvider.Exported=True for any
DatasetProvider you wish to export. (More information on why I
mention TDatasetProvider will follow shortly.) This also means
you must bind a TDataset to a TDatasetProvider and export the
TDatasetProvider in MIDAS 3. While this is different from past
versions, it’s a very minor price to pay, given the increased flexi-
bility a TDatasetProvider component gives you as opposed to
directly exporting a TDBDataset. The RDM’s IAppServer interface
is then used to scan the list of providers that are exported in this
manner. So there are no visible changes on the client side to forge
the link. You still set ClientDataset.RemoteServer and
ClientDataset.ProviderName as you always have.

The down side of the new approach is that you must convert all
your client applications to get away from IProvider and use the
new IAppServer interface instead. This means calls to

Informant Spotlight

class procedure TMyRDM.UpdateRegistry(Register: Boolean;
const ClassID, ProgID: string);

begin
if Register then

begin
inherited UpdateRegistry(Register, ClassID, ProgID);
EnableSocketTransport(ClassID);
EnableWebTransport(ClassID);

end
else

begin
DisableSocketTransport(ClassID);
DisableWebTransport(ClassID);
inherited UpdateRegistry(Register, ClassID, ProgID);

end;
end;

Figure 3: A sample listing of the UpdateRegistry method.

type
IAppServer = interface(IDispatch)

['{ 1AEFCC20-7A24-11D2-98B0-C69BEB4B5B6D }']
function AS_ApplyUpdates(const ProviderName: WideString;

Delta: OleVariant; MaxErrors: Integer;
out ErrorCount: Integer; var OwnerData: OleVariant):
OleVariant; safecall;

function AS_GetRecords(const ProviderName: WideString;
Count: Integer; out RecsOut: Integer; Options: Integer;
const CommandText: WideString; var Params: OleVariant;
var OwnerData: OleVariant): OleVariant; safecall;

function AS_DataRequest(const ProviderName: WideString;
Data: OleVariant): OleVariant; safecall;

function AS_GetProviderNames: OleVariant; safecall;
function AS_GetParams(const ProviderName: WideString;

var OwnerData: OleVariant): OleVariant; safecall;
function AS_RowRequest(const ProviderName: WideString;

Row: OleVariant; RequestType: Integer;
var OwnerData: OleVariant): OleVariant; safecall;

procedure AS_Execute(const ProviderName: WideString;
const CommandText: WideString; var Params: OleVariant;
var OwnerData: OleVariant); safecall;

end;

Figure 2: We now use the IAppServer interface instead of IProvider.
ClientDataset.Provider.DataRequest and
ClientDataset.Provider.ApplyUpdates — to name two — must be
rewritten to access the new ClientDataset.AppServer property. A
moderate application will take 15-30 minutes to convert once
you understand what you need to do and you’ve done it a few
times. Fortunately, the online Help is superb in telling you exact-
ly what you need to do to make this conversion a successful one.

No More TProvider
In addition to removing the IProvider interface, the TProvider
component has been removed. The reason for this change is
the introduction of a new interface, the IProviderSupport inter-
face. All the things a provider must do to be considered a
MIDAS provider has been abstracted into this interface. As far
as MIDAS is concerned, there is no longer a delineation
between TDataset and TDBDataset. The onus is now on the
TDataset descendant to tell MIDAS what to do when asked, as
opposed to the provider trying to provide least-common-
denominator functionality for all datasets. It’s for this reason
that TDatasetProvider is the new way to do things in MIDAS.
TProvider still exists for backwards compatibility, but is not
installed on the Component palette.

Any TDataset descendant that wants to participate as a MIDAS
provider must implement the appropriate methods of
IProviderSupport. For example, while TDataset is the first compo-
nent in the hierarchy to implement IProviderSupport, it provides
mainly blank method implementations. As you walk down the
hierarchy to TADODataset, TBDEDataset, TDBDataset, and
TQuery/TTable, further refinements to the implementation take
place. When the Provider needs to get information or apply
updates, it uses the IProviderSupport interface implementation for
the TDataset to which it is bound.

TSocketConnection Changes
TSocketConnection has also undergone some surgery for this
release. A new property, SupportCallbacks, has been added to
the TSocketConnection. If this property is set to False, callbacks
will not be supported in your application. Therefore, if you’re
not using callbacks, set this property to False. The advantage
16 August 1999 Delphi Informant
of doing so means you only need Winsock 1 to deploy your
client application. Win95 machines don’t come with WinSock 2,
so it was one more impediment to a smooth client-side deploy-
ment. In addition, performance will be better if you disable call-
back functionality.

Another change to TSocketConnection (and TWebConnection,
which I’ll explain later) is made on the security front. In the
past, TSocketConnection allowed you to run any automation
object on the server. This hole has been plugged by requiring you
to override the UpdateRegistry method in the RDM. In this
method, you can call one of several helper functions that will
mark your application server as registered. See Figure 3 for a
sample listing of one such UpdateRegistry method. All the helper
functions will be explained throughout the course of this article.

The call to EnableSocketTransport simply places a registry entry
under the application server’s CLSID. This entry signifies that the
application is available for running. One more option for you is the
global override switch found in SCKTSRVR. If you uncheck the
Connections | Registered Objects menu option, you eliminate the
security check on the server.

RDM Pooling
RDMs are firmly rooted in COM. Because of this, the two main
ways to create RDMs is to use DCOM’s instancing options of either
ciMultiInstance or ciSingleInstance. ciMultiInstance RDMs spawn one
process for all clients to use. Each client will have their own RDM,
but because the application is a single-threaded application, only
one RDM can be working at a time. This leads to unacceptable
delays in a multi-user setting.

ciSingleInstance RDMs will spawn one process per client, thus
taking more memory and resources. This option is only viable if
you have a few clients connecting. The reason for this is that if
you’re using the BDE, each process counts as one application
that uses the BDE. The BDE has a limitation of 48 processes per
machine. Therefore, the 49th client will not be able to spawn the
49th copy of the server.

The solution to these two sub-optimal choices prior to Delphi 5 was
to use the TThreadedClassFactory to get the best of both worlds.
One process would be spawned for all clients to share, avoiding the
multiple-process problem of ciSingleInstance. Furthermore, each
client would get its own RDM in a separate thread, thus avoiding
the delay problems inherent in ciMultiInstance. Unfortunately,

Figure 5: A typical setup using
TWebConnection.

Figure 4: With the new
threaded server
changes, multiple
threads are in use as
multiple clients connect
to the application server.

Informant Spotlight
spawning unlimited threads
could cause performance
problems.

Delphi 5 solves all these
problems by introducing
object pooling for the
RDM. To set up RDM
pooling, you simply make a
call to the RegisterPooled helper function in the over-
ridden UpdateRegistry method of the RDM. You spec-
ify the maximum number of RDMs to create, and the
amount of idle time before the RDM gets freed. If
you’re using free threading in your RDM, you can
also mark this RDM as a singleton. The declaration
for RegisterPooled looks like this:

procedure RegisterPooled(const ClassID: string;
Max, Timeout: Integer; Singleton: Boolean = False);

When you attempt to instantiate an RDM that is
marked for pooling from the client, an intermediary
gives out one of the free RDMs in the pool. If all
RDMs are in use, you’ll get a “Server too busy” error
message. No further work on your part is required to
take advantage of RDM pooling.

At the time of this writing, RDM pooling was only
available with TWebConnection. By the time Delphi 5
hits the shelves, TSocketConnection may support this
feature as well.

Threaded Server Changes
Writing multi-threaded MIDAS application servers has
been pretty easy since the introduction of TThreadedClassFactory.
This class functions as a replacement to the standard
TComponentFactory that Delphi surfaces for COM object creation.
However, TThreadedClassFactory has not made it through a full QA
cycle, and has been relegated to the DEMOS area of the product.
There have even been some reports that this class factory replacement
doesn’t work as well as it should when using multiple processors.

With MIDAS 3, writing a multi-threaded EXE is as easy as setting
the CoInitFlags variable to COINIT_APARTMENTTHREADED.
To make it even easier, the TComponentFactory now respects
the ThreadingModel flag for EXEs, and will set CoInitFlags
appropriately for you. For example, the following code in the
initialization section of your RDM makes an application server
multi-threaded:

initialization
TComponentFactory.Create(ComServer, TEmpServer,

Class_EmpServer, ciMultiInstance, tmApartment);

Remember that if you set this flag to make your application serv-
er multi-threaded, you must take care to protect global variables
and GUI updates with thread-protection devices, such as Critical
Sections or PostMessages. See the accompanying source code for
the complete example of a multi-threaded server (see end of arti-
cle for download details).

Figure 4 shows the result of this change: multiple threads are in use
as multiple clients connect to the application server.
17 August 1999 Delphi Informant
Introducing TWebConnection
You may have noticed this component in
the table in Figure 1. I’m even willing to
bet that a portion of you skipped right to
this section to find out what
TWebConnection is all about. Don’t worry.
You won’t be disappointed.

TWebConnection is a TSocketConnection descendant that permits
MIDAS traffic to be bundled into valid HTTP traffic, and thus
use the most open port in the world, the HTTP port (default
port 80). Actually, the component even supports SSL, so you can
have secure communications. By doing this, all firewall issues are
completely eliminated. After all, if a corporation doesn’t allow
HTTP traffic in or out, there is nothing that can be done to com-
municate with them anyway.

This bit of magic is accomplished by providing an ISAPI exten-
sion that translates HTTP traffic into MIDAS traffic, and vice-
versa. In this regard, the ISAPI DLL does the same work that
scktsrvr does for socket connections. The ISAPI extension
httpsrvr.dll needs to be placed in a directory capable of executing
code. For example, with IIS4, the default location for this file
would be in c:\inetpub\scripts. See Figure 5 for a screen shot of a
typical setup using TWebConnection.

Another benefit of using HTTP for your transport is that an
operating system like Windows NT Enterprise allows you to
cluster servers. This provides true load balancing and fault toler-
ance for your application server. For more information about
clustering, see http://www.microsoft.com/ntserver/ntserverenterprise/
exec/overview/clustering.

The limitations of using TWebConnection are fairly trivial, and
well worth any concession in order to have more clients capable
of reaching your application server. The limitations are that

http://www.microsoft.com/ntserver/ntserverenterprise/exec/overview/clustering
http://www.microsoft.com/ntserver/ntserverenterprise/exec/overview/clustering

 components and settings for the Web MIDAS client at design time.

Informant Spotlight
you must install wininet.dll on
the client, and no callbacks are
available when using
TWebConnection. In addition, you
must register the application server
with the utility function
EnableWebTransport in an overrid-
den UpdateRegistry method. Refer
back to Figure 3 for a sample listing
of this method.

Web MIDAS Client
One of the more innovative features
in Delphi 5 is the Web MIDAS
client. Using the components
found on the WebMidas tab of
the Component palette, you can
create a browser-only front end to
your MIDAS application servers.
No requirements; nothing but a
Web browser hitting a Web server.
This bit of magic is accomplished
by using a few complementary
technologies: MIDAS, XML,
JavaScript, and the Delphi
WebBroker.

To build a complete Web client, you must understand the
WebBroker architecture. This article will not explore this topic in
any detail, but rather provide an overview of the steps you need
to take to build a rudimentary Web MIDAS client.

First, you need to create a Web server application by selecting
File | New | WebServer. I’ll create an ISAPI application here, as
the application will run under IIS4. Next, add a
TDCOMConnection component to the WebModule and set the
ServerName property. This will act as your conduit to the appli-
cation server from the ISAPI application.

Next, place a TXMLBroker component on the WebModule and
link it to the DCOMConnection component you just placed on
the WebModule. In this regard, you can think of the XMLBroker
component as the WebMidas equivalent of the TClientDataset.
The main difference is that the XMLBroker uses XML data pack-
ets instead of the OleVariants used by ClientDatasets.

If you want to specify an HTML page that will be sent automati-
cally after a successful ApplyUpdates, you can tie the
XMLBroker.ResponseProducer to any PageProducer component.
Reconciliation errors will be dealt with by specifying a
PageProducer capable of dealing with these errors. A standard
HTML page, ERR.HTML, is included in the
<Delphi>\SOURCE\WEBMIDAS directory. It serves as a conve-
nient starting place to deal with reconciliation errors, much like
the RECERROR.PAS unit is the standard way to deal with rec-
onciliation errors in Windows applications. We’ll ignore the
other properties and events on the XMLBroker component.

Finally, place a MidasPageProducer component on the
WebModule. This is the key component that will generate the
HTML content that the browser will eventually see. Notice that
the HTMLDoc property has a default template inside it already.
The HTML tags will expand at design time, when you create the

Figure 6: Some of the key
18 August 1999 Delphi Informant
HTML content by using the Web Page Editor (available by
double-clicking on TMidasPageProducer).

The main property to note on TMidasPageProducer is
IncludePathURL. This is the property that will determine where
the application will look for the JavaScript files that help pro-
duce the WebMidas application. You’ll need to deploy the *.js
files found in <Delphi>\SOURCE\WEBMIDAS to a location
accessible by your ISAPI application.

To customize the HTML that will display from your ISAPI appli-
cation, press the New button in the Web Page Editor. For this
sample, we’ll choose DataForm. While selecting DataForm in the
tree view, press New again. You’ll be presented with a list of com-
ponents that you can add based on your selection. Select DataGrid

and DataNavigator to add these elements to your HTML page.

At this point, select the DataGrid element in the tree view and view
the Object Inspector. If you set the XMLBroker property to the com-
ponent you added above, you’ll see a grid display in the resulting
HTML code below. Do the same thing for the DataNavigator and
you’ll see a group of buttons that look like the DBNavigator. You can
customize just about any attribute or element on the HTML page.

Figure 6 shows some of the key components and settings at design time.

Now that we’ve built the page, we need to send the resulting HTML
page to a Web browser. The content is generated by creating a new
WebModule Action (by double-clicking on the WebModule and
pressing the Add button) and assigning the OnAction event to the
following code:

procedure TWebModule1.WebModule1WebActionItem1Action(
Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

begin
Response.Content:=MidasPageProducer1.Content;

end;

Figure 7: The Web MIDAS client in action.

Informant Spotlight
Remember to set the PathInfo of the Action to something meaning-
ful. This value will be used from the browser later to access the vir-
tual page you just created.

To deploy this application, you need to compile the application
and copy the resulting ISAPI DLL to a place that is capable of
running scripting code, e.g. c:\inetpub\scripts. You also need to
place your JavaScript files in the path mentioned in
TMidasPageProducer.IncludePathURL. The only thing left is to
fire up your browser and connect to the page, either directly or
via a link on another HTML page. For example, typing:

http://dmisernt/scripts/empservxml.dll/MidasPageProducer1

would work if you specified:

TWebModule.Actions[0].PathInfo=MidasPageProducer1.

Figure 7 shows the Web MIDAS client in action.

Miscellaneous Changes
Deployment of MIDAS applications has changed slightly with this
release. Because IProvider is gone, there is no more need to deploy
STDVCLnn.DLL. Also, DBCLIENT.DLL got a name change to
MIDAS.DLL. Furthermore, COM is not being used to communicate
with MIDAS.DLL. It’s still registered with COM, and COM objects
exist inside it, but the mechanism to retrieve those objects makes calls to
CoCreateInstance unnecessary. The real benefit to the new approach is
that you should see no more “CoInitialize has not been called” errors.

One of the primary benefits of writing a multi-tier application is the
ability to partition your business logic into the middle tier. In this
tier, you can evaluate data as it comes from the client and is about
to be written to the server. You may even end up changing some of
the values in this tier to help the data conform to your business
rules. Until MIDAS 3, you needed to devise your own mechanism
to update the record, or refresh the entire ClientDataset — which
could prove to be a very costly operation.

With the addition of the Provider.Options.poPropogateChanges prop-
erty, any change you make on the application server will automati-
cally be returned to the client and merged into the ClientDataset.
Another common reason for using this feature will be when you use
auto-incrementing keys, date-time stamps, or triggers to modify
record values on the server.
19 August 1999 Delphi Informant
The Provider.Options set added many other
new values as well. Some of the more
intriguing ones are the poDisableInserts,
poDisableEdits, and poDisableDeletes ele-
ments. By setting these properties appropri-
ately, you can prevent the ClientDataset
that is linked to this TProvider from insert-
ing, editing, or deleting records. This pro-
vides a new opportunity to centralize more
business logic and security implementation
details on the server, which is always a good
thing when trying to make your client as
thin as possible.

The ability to send dynamic SQL to the serv-
er is easier than ever. Using the
ClientDataset.CommandText property, you
can send a SQL statement from the client to

the server. As long as you set Provider.Options.poAllowCommandText
to True, this change will be accepted. The statement will be exe-
cuted when you issue either an Open or Execute command.
Execute is a new method that allows you to execute queries on the
server that don’t generate a result set. Output parameters will be
passed back, but no result set. This brings ClientDataset more in
line with TQuery and TStoredProc.

Lastly, I would be remiss not to point out that this version of
MIDAS appears to be far more stable than its predecessor, even
while in pre-release. Bugs that were present in MIDAS 2 have
been dealt with. And new features and functionality appear to
have a very low defect rate. This optimal combination of new
features and reduced bug count makes MIDAS 3 very impressive.

Conclusion
This article covered many of the new features that MIDAS 3
introduced. I’m sure there will be features in the release version
that were not available in the version used to do this review.
However, this is only the beginning. Each topic is begging for
your detailed exploration to find out how you can best use
MIDAS to create robust, efficient multi-tier applications.
MIDAS has always been able to deliver data easily, and MIDAS
3 does just that — it delivers. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\AUG\DI9908DM.

Dan Miser is a long-time Delphi programmer and consultant, specializing in
multi-tier application design using MIDAS. He is active in the Borland news-
groups, where he serves as a proud member of TeamB (http://www.teamb.com).
Dan also finds time to write for Delphi Informant and speak at Borland confer-
ences. You can visit his Web site at http://www.execpc.com/~dmiser, or contact
him at dmiser@execpc.com.

http://www.teamb.com
http://www.execpc.com/~dmiser

20 August 1999 Delphi Informant

The API Calls
Networks / Distributed Programming

By Ashley Davy

Figure 1: Hierarchical organizatio
Reference Help file).
Network Share
Getting Information about Network Resources

With distributed computing on the rise, obtaining network information is often a
necessity for the Windows application developer. For example, a developer might

want to locate all the available printers on the network, connect to a remote registry,
search for a particular DCOM object, or simply connect to a network share. All these
tasks involve finding and identifying network resources.
Accomplishing these tasks can seem daunting at
first since Delphi doesn’t include a component or
functions to return resources on the network. You
must therefore turn to the Windows API, a set of
library DLLs at the heart of the Windows operat-
ing system. There are some differences between
API calls for the different Windows environments.
Some API calls available for one operating system
may not be available or work properly with other
Windows operating systems. However, all calls
listed here will work for the Windows 95, 98, and
NT platforms.
n of a network (from the Win32 Programmer’s
Delphi includes these libraries in its native units
and provides wrapper functions and procedures
for most of these API calls. The DLL containing
the function calls that we’ll indirectly reference is
mpr.dll. These functions are then prototyped in
Windows.pas, which will be included in our appli-
cation. The Win32 Programmer’s Reference is a
Help file that comes with Delphi. (If you can’t
locate it on your machine, you may not have
loaded it when you installed Delphi.) It contains a
wealth of information and insight into Windows
programming.

Understanding the Hierarchy
The networking environment is organized into a
hierarchy (see Figure 1). There are basically two types
of objects or data structures that describe a particular
resource: a container, and a connectable resource. A
container resource would be a particular domain or
server, whereas a connectable resource would be a
printer or shared directory. Each container may have
connectable and other container objects. With this in
mind, only container resources can be enumerated
because a connectable resource can’t have any other
network information. The network hierarchy is
formed through these container resources. In obtain-
ing network information, it’s not necessary to have
knowledge of the particular computer network in
question. To enumerate all the resources on the net-
work, it’s only necessary to start at the network root
because it’s organized in a hierarchical fashion.

Once the network root resource is obtained (which
is a container, by the way), this resource can then
be enumerated to obtain all its container and/or
connectable resources. After this has been accom-
plished, each resource that was obtained from the
network root can then be tested to see if it’s a con-

The API Calls
tainer resource. If it is, it can then be enumerated. This process will
repeat until all the resources on the network have been enumerated.

Looking at the program, its function is similar to network neighbor-
hood (see Figure 2). When the program starts, it opens with the net-
work root in the list view. Double-clicking on a particular listing will
21 August 1999 Delphi Informant

Figure 2: The Network Resources dialog box.

// Used to load data into/from the NetResourceA record.
type

PPNetResA = ^TNetResA;
TNetResA = class(TObject)
public

dwScope: Cardinal;
dwType: Cardinal;
dwDisplayType: Cardinal;
dwUsage: Cardinal;
lpLocalName: string;
lpRemoteName: string;
lpComment: string;
lpProvider: string;
NetResOwner: TNetResA;

end;

// Record structure of NetResource as declared in Windows.pas.
type

PNetResourceA = ^TNetResourceA;
TNetResource = TNetResourceA;
TNetResourceA = _NETRESOURCEA;
NETRESOURCEA = _NETRESOURCEA;
_NETRESOURCEA = packed record

dwScope: DWORD;
dwType: DWORD;
dwDisplayType: DWORD;
dwUsage: DWORD;
lpLocalName: PAnsiChar;
lpRemoteName: PAnsiChar;
lpComment: PAnsiChar;
lpProvider: PAnsiChar;

end;

Figure 3: Two parameters of types TStringList and TNetResA are
passed when calling the GetNetRes procedure (from the
Windows.pas unit included with Delphi).
cause that resource to be enumerated. Clicking on an item will dis-
play that particular resource’s information in the bottom part of the
form. The Move Up button will move up to the previously enumerat-
ed resource. For example, if you’re on a server resource and double-
click, two directory shares are displayed. At this point, if the Move Up

button is clicked, the previously enumerated resource (the server in
this case) will be displayed.

Examining the Code
Working with the Windows API usually isn’t straightfor-
ward, but we have little choice. Using the API is usually
difficult for three reasons:

It’s hard to locate the proper function or functions to
use to accomplish a specific task.
Once you’ve located the functions, they’re poorly doc-
umented as to their implementation.
The functions are documented in reference to C code,
making it even more challenging for Pascal programmers.

For this program, the Windows API calls that will be
used are WNetOpenEnum, WNetEnumResource, and
WNetCloseEnum — three simple functions with many
parameters, and even more pitfalls.

The procedure at the heart of the application is
GetNetRes, which is located in the UNetResources unit,
shown in Listing One (beginning on page 23). When
calling this procedure, two parameters are passed in, of
types TStringList and TNetResA. The TStringList is creat-
ed before being passed into the procedure. The TNetResA
class type mimics the TNetResource record structure
defined in the Windows.pas unit (see Figure 3).

The following array structure is defined in the type sec-
tion of the GetNetRes procedure:

type
PCompResArray = ^TCompResArray;
TCompResArray = array[0..10000] of TNetResource;

This is a very important part of retrieving network resource informa-
tion. The first step in obtaining the network resource information is
copying the data in the TNetResA object (referenced in the procedure
as NetResOwner) into a declared procedural variable named NetResA.
The variable NetResA is of type NetResourceA, which is a record. The
reason for the switching of the data between the record type and the
object is because it’s usually easier to work with objects than with
record types. In moving the data to the record, the last four data mem-
bers are of type PAnsiChar. When populating these data members,
memory will have to be allocated for each one with the StrAlloc func-
tion, then copied into the PAnsiChar with the StrPCopy function.

There is a special case in which no data will be copied, and that’s if
the NetResOwner is nil. This special case indicates the top of the net-
work hierarchy. Once the data is copied into the record structure or
the TNetResA object is found nil, then it’s time to make the first API
call. The first call is made using the function WNetOpenEnum. A
usage description and a parameter listing for this call and all other API
calls can be found in the Win32 Programmer’s Reference Help file.

The purpose of WNetOpenEum is to open a handle to a specific net-
work resource defined by the NetResourceA record. This function takes
five parameters. The first is the scope of the enumeration. Being inter-

The API Calls
ested in all network resources, this parameter is set to the predefined
constant RESOURCE_GLOBALNET. The next parameter describes
the type of resources to enumerate. This is set to
RESOURCETYPE_ANY. The third parameter is the usage parameter,
and, because we’re interested in obtaining all network resources, this
parameter will be set to zero. The fourth parameter is a pointer to our
NetResourceA record. In the first call to this function, this parameter will
be nil in order to obtain the handle to the top-level container to enu-
merate. The last parameter is the network resource handle. The value
passed in is meaningless. The variable passed into the function only has
meaning when the function returns NO_ERROR. This indicates the
function call was successful, and the network resource handle is stored
in the address of the fifth parameter, i.e. the variable that was passed in.

With a successful call to WNetEnumOpen the attention can then be
turned to the next API call: WNetEnumResource. This call is more dif-
ficult, because this function plays many different roles and has to be
called repeatedly to get the enumerated information. This function
takes four parameters, the first of which is the network resource han-
dle obtained by the function call WNetEnumOpen. The second para-
meter is an integer that defines the number of entries requested. In
22 August 1999 Delphi Informant

// Enter loop to continually enumerate the resource until
// all resources have been acquired.
repeat

I := 0;
// Obtain the resources that were enumerated with the
// first call to WNetEnumResource.
for I := 0 to ResourceEntries - 1 do begin

NetResB := TNetResA.Create;
NetResB.dwScope := ComputerResources^[I].dwScope;
NetResB.dwType := ComputerResources^[I].dwType;
NetResB.dwDisplayType :=

ComputerResources^[I].dwDisplayType;
NetResB.dwUsage := ComputerResources^[I].dwUsage;
NetResB.lpLocalName :=

StrPas(ComputerResources^[I].lpLocalName);
NetResB.lpRemoteName :=

StrPas(ComputerResources^[I].lpRemoteName);
NetResB.lpComment :=

StrPas(ComputerResources^[I].lpComment);
NetResB.lpProvider :=

StrPas(ComputerResources^[I].lpProvider);
NetResB.NetResOwner := NetResOwner;
NetResList.AddObject(IntToStr(I) + ' - ' +

NetResB.lpRemoteName,NetResB);
end;

// Free the memory for the buffer and re-initialize
// the variables.
FreeMem(ComputerResources, BufferSize);
ResourceEntries := MaxValue;
BufferSize := 0;
// Call WNetEnumResource again to determine the amount
// of memory that is needed for the next enumeration of
// network resource array information.
ReturnValue := WNetEnumResource(NetResHand,

ResourceEntries, ComputerResources, BufferSize);
// Allocate the memory and re-initialize the
// ResourceEntries variable.
GetMem(ComputerResources, BufferSize);
ResourceEntries := MaxValue;
// Call WNetEnumResource again to continue the enumeration of
// the network resource.
ReturnValue := WNetEnumResource(NetResHand,

ResourceEntries, ComputerResources, BufferSize);

until not((ReturnValue = NO_ERROR) or
(ReturnValue = ERROR_MORE_DATA));

Figure 4: This loop moves data into objects loaded into
TStringList, and calls WNetEnumResource until there are no more
obtainable data.
this particular example, all entries are requested, so each time this
function is called, it’s set to the maximum value, which is MaxDWord
(defined in Windows.pas). When the function is successful, the sec-
ond parameter will contain the number of entries actually read.

The third and fourth parameters work together. The third is a point-
er of the type PCompResArray. This type was defined in the
GetNetRes procedure. The last parameter is the buffer size, which has
a dual role. It specifies the memory size of the third parameter; how-
ever, if the call is made and the buffer size is zero, upon a successful
return this last parameter will then contain the size of the memory
block the third parameter will need.

Now the appropriate sequencing of these two API calls can be made to
obtain the network resource information. The first thing to do is call
WNetOpenEnum to get the resource handle for the particular resource in
question. Having obtained the handle call WNetEnumResource, make
sure the second parameter is set to the maximum value and the last
parameter, which is the buffer size, is set to zero. This call is successful
when it returns a value of NO_ERROR or ERROR_MORE_DATA.

In this step, WNetEnumResource isn’t going to return data, but it
will return the amount of memory needed for the data structure
that is passed in. With a successful call, the amount of memory
needed to be allocated will be contained in the last parameter. Now
that the amount of memory needed for the structure is known, it
can be allocated. It’s important to note that in the beginning of this
procedure, a type structure was defined, and the variable
ComputerResources was declared as PCompResArray:

type
PCompResArray = ^TCompResArray;
TCompResArray = array[0..10000] of TNetResource;

var
ComputerResources: PCompResArray;

All that has happened up to this point is that the structure of the
memory has been defined. The actual space or memory block hasn’t
been allocated for this structure. It’s simply a pointer to a list of
pointers of TNetResource records. With this in mind, the memory
can now be allocated with the following call:

GetMem(ComputerResoures, BufferSize);

where the ComputerResources array is the pointer to the structure of the
memory block, and BufferSize is the size of the memory needed
(returned from the first call to WNetEnumResource). The next step is to
set the variable ResourceEntries back to its maximum value. These two
items being completed, a second call to WNetEnumResource is made. In
this call, there are three things to note. The first is that any data that is
returned will be in the ComputerResources variable. The second is the
ResourceEntries variable, which tells how many record items were
returned. The third item to note is the return value of the function. If
this value is NO_ERROR or ERROR_MORE_DATA, there will be
subsequent calls to WNetEnumResource to retrieve more information.

With these items noted, we’re now ready to process the information in a
loop to move the data out of the records and into objects that will be
loaded into the TStringList, which was passed into the procedure. The
loop is used to accomplish two tasks: to move the data from the records
into objects and continually call WNetEnumResource until there is no
more data to be obtained (see Figure 4).

The API Calls
There’s a for loop inside the repeat loop that will iterate through the
ComputerResources array and de-reference each data element and load
it into the object. The number of iterations depends on the
ResourceEntries variable, which contains the number of entries
returned from the call to WNetEnumResource.

Once the for loop has finished, the steps that were implemented in
the beginning of the procedure are repeated with some subtle differ-
ences. First the memory that was allocated is freed, and the variables
ResourceEntries and BufferSize are set to MaxValue and zero, respective-
ly. WNetEnumResource is called again to determine the buffer size
needed for the group of information to be retrieved. This value mem-
ory is allocated to the ComputerResources pointer, and ReturnEntries is
set to MaxValue. The call is then made to WNetEnumResource again,
this time to populate ComputerResources with the network resource
information. This process is repeated until a return value other than
NO_ERROR or ERROR_MORE_DATA is encountered.

Conclusion
Workers are becoming increasingly dependent not only on their own
computers, but also on the networks to which they’re connected —
and located on these various networks are resources of one kind or
another. As the technology of computers has developed, we’ve seen
operating systems evolve from being able to run only one application
at a time to now running many programs at once. This being the case,
the next logical step was for these programs to communicate with
each other. This is the same progression that is being felt in the net-
working environment between computer systems today. Whether it’s
applications communicating with each other or various other
resources that need to be utilized from a remote machine, users will
come to expect computer-to-computer communication. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\AUG\DI9908AD.

Ashley Davy is a software engineer at Medic Computer Systems in Raleigh, NC.
He has been developing Windows software for approximately four years, focusing
mainly in areas of memory management and operating systems programming.
He also has two certifications with Microsoft: Microsoft Product Specialist and
Microsoft Certified Solutions Developer (MCSD). He can be reached via e-mail at
adavy@bellsouth.net.
Begin Listing One — UNetResources.pas
unit UNetResources;

interface

uses
Windows, SysUtils, Dialogs, Classes;

// Class used to load data into/from
// the NetResourceA record.
type

PPNetResA = ^TNetResA;
TNetResA = class(TObject)
public

dwScope: Cardinal;
dwType: Cardinal;
dwDisplayType: Cardinal;
dwUsage: Cardinal;
lpLocalName: string;
23 August 1999 Delphi Informant
lpRemoteName: string;
lpComment: string;
lpProvider: string;
NetResOwner: TNetResA;

end;

// Procedure used to retrieve network resoures that a
// container network resource may contain.
procedure GetNetRes(NetResList: TStringList;

NetResOwner: TNetResA);

var
NetResList: TStringList;
NResA: PNetResourceA;

implementation

procedure GetNetRes(NetResList: TStringList;
NetResOwner: TNetResA);

type
PCompResArray = ^TCompResArray;
TCompResArray = array [0..10000] of TNetResource;

const MaxValue = 4294967295;

var
I, K: Integer;
ReturnValue: Cardinal;
NetResHand: Cardinal;
ResourceEntries: Cardinal;
BufferSize: Cardinal;
ComputerResources: PCompResArray;
NetRes,NetResB: TNetResA;
NetResA: NetResourceA;
PNetResA: PNetResourceA;
ReturnValueStr: string;

begin
// Convert the NetResOwner, which is a TNetResA Object to
// a PNetResourceA record. If NetResOwner is nil, this
// indicates that the top-level network resource is being
// enumerated.
if Assigned(NetResOwner) then

begin
NetResA.dwScope := NetResOwner.dwScope;
NetResA.dwType := NetResOwner.dwType;
NetResA.dwDisplayType := NetResOwner.dwDisplayType;
NetResA.dwUsage := NetResOwner.dwUsage;
NetResA.lpLocalName :=

StrAlloc(Length(NetResOwner.lpLocalName) + 1);
StrPCopy(NetResA.lpLocalName,

NetResOwner.lpLocalName);
NetResA.lpRemoteName :=

StrAlloc(Length(NetResOwner.lpRemoteName) + 1);
StrPCopy(NetResA.lpRemoteName,

NetResOwner.lpRemoteName);
NetResA.lpComment :=

StrAlloc(Length(NetResOwner.lpComment) + 1);
StrPCopy(NetResA.lpComment, NetResOwner.lpComment);
NetResA.lpProvider :=

StrAlloc(Length(NetResOwner.lpProvider) + 1);
StrPCopy(NetResA.lpProvider,NetResOwner.lpProvider);
PNetResA := Addr(NetResA);

end
else

PNetResA := nil;

// Intialize Values for API call. The buffer size is the
// amount of memory needed to store the record structures
// returned.
BufferSize := 0;
ResourceEntries := MaxValue;

// Open handle to network resource.
ReturnValue := WNetOpenEnum(RESOURCE_GLOBALNET,

RESOURCETYPE_ANY, 0, PNetResA,NetResHand);

// If the return value is anything other than NO_ERROR,

The API Calls
// then exit the procedure.
if ReturnValue <> NO_ERROR then begin

case ReturnValue of
NO_ERROR:

ReturnValueStr := 'NO_ERROR';
ERROR_NOT_CONTAINER:

ReturnValueStr := 'ERROR_NOT_CONTAINER';
ERROR_INVALID_PARAMETER:

ReturnValueStr := 'ERROR_INVALID_PARAMETER';
ERROR_NO_NETWORK:

ReturnValueStr := 'ERROR_NO_NETWORK';
ERROR_EXTENDED_ERROR:

ReturnValueStr := 'ERROR_EXTENDED_ERROR';
end;

MessageDlg(ReturnValueStr, mtError, [mbOk], 0);
Exit;

end;

// This API call is used to enumerate the container
// network resource to obtain the other network resources
// that fall below this item in the network hierarchy.
// The first call to this API function is used to
// determine the size of the memory block that will be
// needed to hold the array values. The size of the
// memory block will be stored in BufferSize.
ReturnValue := WNetEnumResource(NetResHand,

ResourceEntries, ComputerResources, BufferSize);

// If the return value is anything other than NO_ERROR or
// ERROR_MORE_DATA, then exit the procedure.
if Not((ReturnValue = NO_ERROR) or

(ReturnValue = ERROR_MORE_DATA)) then begin
case ReturnValue of

NO_ERROR:
ReturnValueStr := 'NO_ERROR';

ERROR_NO_MORE_ITEMS:
ReturnValueStr := 'ERROR_NO_MORE_ITEMS';

ERROR_MORE_DATA:
ReturnValueStr := 'ERROR_MORE_DATA';

ERROR_INVALID_HANDLE:
ReturnValueStr := 'ERROR_INVALID_HANDLE';

ERROR_NO_NETWORK:
ReturnValueStr := 'ERROR_NO_NETWORK';

ERROR_EXTENDED_ERROR:
ReturnValueStr := 'ERROR_EXTENDED_ERROR';

end;

MessageDlg(ReturnValueStr, mtError, [mbOk], 0);
Exit;

end;

// Initialize entries value and allocate the memory for
// the enumeration buffer.
ResourceEntries := MaxValue;
GetMem(ComputerResources, BufferSize);

// Second call to EnumResources to actually load the data
// into the ComputerResources array.
ReturnValue := WNetEnumResource(NetResHand,

ResourceEntries, ComputerResources, BufferSize);

// If the return value is anything other than NO_ERROR or
// ERROR_MORE_DATA, then exit the procedure.
if not((ReturnValue = NO_ERROR) or

(ReturnValue = ERROR_MORE_DATA)) then begin
case ReturnValue of

NO_ERROR:
ReturnValueStr := 'NO_ERROR';

ERROR_NO_MORE_ITEMS:
ReturnValueStr := 'ERROR_NO_MORE_ITEMS';

ERROR_MORE_DATA:
ReturnValueStr := 'ERROR_MORE_DATA';

ERROR_INVALID_HANDLE:
ReturnValueStr := 'ERROR_INVALID_HANDLE';

ERROR_NO_NETWORK:
ReturnValueStr := 'ERROR_NO_NETWORK';

ERROR_EXTENDED_ERROR:
ReturnValueStr := 'ERROR_EXTENDED_ERROR';
24 August 1999 Delphi Informant
end;

MessageDlg(ReturnValueStr, mtError, [mbOk], 0);
Exit;

end;

// Enter loop to continually enumerate the resource until
// all resources have been acquired.
repeat

I := 0;
// Obtain the resources that were enumerated with the
// first call to WNetEnumResource.
for I := 0 to ResourceEntries - 1 do begin

NetResB := TNetResA.Create;
NetResB.dwScope := ComputerResources^[I].dwScope;
NetResB.dwType := ComputerResources^[I].dwType;
NetResB.dwDisplayType :=

ComputerResources^[I].dwDisplayType;
NetResB.dwUsage := ComputerResources^[I].dwUsage;
NetResB.lpLocalName :=

StrPas(ComputerResources^[I].lpLocalName);
NetResB.lpRemoteName :=

StrPas(ComputerResources^[I].lpRemoteName);
NetResB.lpComment :=

StrPas(ComputerResources^[I].lpComment);
NetResB.lpProvider :=

StrPas(ComputerResources^[I].lpProvider);
NetResB.NetResOwner := NetResOwner;
NetResList.AddObject(IntToStr(I) + ' - ' +

NetResB.lpRemoteName,NetResB);
end;

// Free the memory for the buffer and re-initialize
// the variables.
FreeMem(ComputerResources, BufferSize);
ResourceEntries := MaxValue;
BufferSize := 0;
// Call WNetEnumResource again to determine the amount
// of memory that is needed for the next enumeration of
// network resource array information.
ReturnValue := WNetEnumResource(NetResHand,

ResourceEntries, ComputerResources, BufferSize);
// Allocate the memory and re-initialize the
// ResourceEntries variable.
GetMem(ComputerResources, BufferSize);
ResourceEntries := MaxValue;
// Call WNetEnumResource again to continue the
// enumeration of the network resource.
ReturnValue := WNetEnumResource(NetResHand,

ResourceEntries, ComputerResources, BufferSize);

until not((ReturnValue = NO_ERROR) or
(ReturnValue = ERROR_MORE_DATA));

// Dispose of the pchar memory that was allocated for the
// PNetResourceA structure.
if Assigned(NetResOwner) then begin

StrDispose(NetResA.lpLocalName);
StrDispose(NetResA.lpRemoteName);
StrDispose(NetResA.lpComment);
StrDispose(NetResA.lpProvider);

end;

// Try to free the last memory allocated.
try

FreeMem(ComputerResources, BufferSize);
except
end;

// Close the handle to that was opened with the call
// to WNetOpenEnem.
ReturnValue := WNetCloseEnum(NetResHand);

end;

end.

End Listing One

25 August 1999 Delphi Informant

On the ’Net
DHTML / HTML / Delphi 3, 4

By Ron Loewy
Dynamic Control
Using the DHTML Edit Control from Delphi

When Microsoft shipped Windows 95, a new control for editing rich text was added
to the multi-line edit control that shipped with Windows 3.x. The rich text control

allowed the display and editing of formatted text using Microsoft’s .RTF (rich text format)
file format. .RTF was born when Microsoft needed a text-based format that would be
interchangeable between the Macintosh and Windows versions of Microsoft Word. .RTF
became important to many developers because Microsoft’s Windows Help engine
required .RTF files as the source of content that was compiled to .HLP files.
By the time Windows 95 arrived, however, the
Web was gaining acceptance and HTML was
becoming popular. Today, HTML is a standard
method for exchanging rich text and hypermedia
formats. To meet this standard, Microsoft present-
ed the Dynamic HTML (DHTML) Control SDK
— a WYSIWYG HTML editor that takes advan-
tage of DHTML capabilities like absolute posi-
tioning of elements, access to the document object
model, drag-and-drop capabilities, search, hyper-
links, image support, design-time controls, table
support, and more.

The DHTML Edit Control Architecture
The DHTML Edit Control (DEC) uses the same
HTML layout engine as Microsoft Internet
Explorer (IE4). Because the same layout engine is
used for the browser and the editing control, we’re
assured the editor will be very close to the actual
output as it’s displayed in the browser. IE4’s
HTML layout engine is defined in the file
mshtml.dll, which implements an Active
Document (DocObject) that renders HTML and
handles ActiveX control embedding, Java VM
hosting, plug-in hosting, and Active Script activa-
tion. DEC implements a new DocObject in the
file, triedit.dll, that aggregates mshtml.dll and pro-
vides browsing and editing.

Internally, triedit.dll uses mshtml.dll for the ren-
dering and layout of the code. Microsoft imple-
mented an ActiveX control that encapsulates this
DocObject and offers an easier way to use the
visual editing control. The ActiveX control is
implemented in the file, dhtmled.ocx.
Microsoft provides DEC free of charge. Your applica-
tion will require that the user’s machine have IE 4.01
or later, and you’ll need to distribute the triedit.dll
and dhtmled.ocx files that are part of the DEC SDK.
You can download the DHTML Edit Control SDK
from http://www.microsoft.com/workshop/author/
dhtml/edit.

The DHTML Edit SDK
The DHTML Edit SDK documents how to use
the DocObject or ActiveX control. The DocObject
provides additional functionality and finer control
of the editing environment compared to the
ActiveX version of the control. Unfortunately,
Delphi’s implementation of TOleContainer in
OleCtnrs.pas (in Delphi 3.02) doesn’t work cor-
rectly with DocObjects and has to be heavily mod-
ified to perform as advertised. This article won’t get
into the changes you need to make to use the
DocObject version of the control. Instead it will
concentrate on using the ActiveX version, which is
easier to use and provides almost all the capabilities
offered by the DocObject control.

Installing DEC
You’ll need to start by adding the control to
Delphi’s Component palette. Choose Component |

Import ActiveX Control, and click on DHTML Edit

Control (Version 1.0) to install it (see Figure 1).
Choose the unit directory and palette you want to
install the control to, and click the Install button.

If you followed the defaults during installation,
two new components will be added to the ActiveX
palette of Delphi. TDHTMLEdit is the ActiveX

http://www.microsoft.com/workshop/author/dhtml/edit
http://www.microsoft.com/workshop/author/dhtml/edit

On the ’Net
control we’ll use. TDHTMLSafe is a safe version of the control that
you can use in browser pages. The difference between the two con-
trols is that the safe version doesn’t provide access to the local file
system, and is therefore safe for use over the Internet.

DEC provides a set of properties, events, and methods that allow
you to perform tasks common to HTML editing. Following are
some of these tasks and their related controls.

Document management. The NewDocument method allows you to
start a new empty document for editing. The LoadDocument and
SaveDocument methods can be used to load and save HTML docu-
ments to and from the file system. The CurrentDocumentPath prop-
erty is used to determine the path to the document being edited. If
you want to open documents that aren’t stored on the file system,
DEC supports the LoadUrl method that allows you to open a file
from the Internet or intranet.

The OnDocumentComplete event is called when a new document has
been created or loaded. When this event is called, you know that it’s
safe to access DEC to gain access to the DOM interface.

Editing content and edit tool notification. DEC provides a
WYSIWYG editor interface where your users can edit the page con-
tents. It’s often useful to edit the control content programmatically.
It allows access to the raw HTML code of the page (see the next sec-
tion), or access to the DOM via the ExecCommand method (or the
IOleCommandTarget interface).

Most applications offer users a visual way of issuing commands to
DEC: a menu, a toolbar, and a floating toolbox are some of the more
common. It’s easy to connect your menu/toolbar button/... action to
the ExecCommand method previously mentioned. However, it’s
important to ensure you’re not issuing a bogus command. The
QueryStatus method allows you to query the control to ensure that
the command in which you’re interested is enabled in the current
control status. It makes no sense to send a “Bring to Front” com-
26 August 1999 Delphi Informant

Figure 1: Importing the DHTML Edit Control in Delphi.
mand to an element that’s not positioned absolutely. If you try to use
QueryStatus before you call the ExecCommand with Bring to Front,
you’ll be notified if the command is valid for the edited element.

The OnDisplayChanged event is called whenever a new element is
written, chosen, or selected in the control. Your code should handle
this event, and use QueryStatus and other methods to update your
visual tool displays. For example, if the selected text is in bold, you
would like to display your bold button in the “down” position.

HTML source access. Although DEC allows your users to work in
WYSIWYG mode and avoid the details related to HTML code,
your application will sometimes be better off when you work with
the raw code. For example, if you allow the user to edit multiple
HTML pages from different pages, it’s important to remember to
set the BaseUrl property of the control to the directory the page was
loaded from, or the control won’t display images correctly for IMG
tags that use relative paths to the image source.

The DocumentHTML property allows you to access the HTML
source code of the page as a long string. You can also set the page
contents by assigning a valid HTML page code to this property. It’s
a good idea to check the Busy property before accessing
DocumentHTML. The control might be in an unstable condition
when editing, parsing, or loading occurs. At these stages, the
DocumentHTML property might not be valid.

Selections. Editing in DEC is done using selection objects. Selection
objects are obtained via the Document Object Model the control
exposes using the DOM property. The DOM’s selection object can
be used to inspect the selected code by creating a TextRange object.
(Use TextRange := DHTMLEdit1.DOM.selection.CreateRange to
obtain the TextRange object. This object’s HtmlText property provides
the source code of the selected area. A complete description of the
selection and text range objects is available in the Internet Client
SDK.) The selection object’s Type property can tell you if the selected
object is a regular HTML stream, or a control embedded in the page.

Control entry points. DEC’s DOM property allows you to access
the DOM hierarchy for the control. It serves the same purpose as
the Document property of TWebBrowser. (See my article “IE4’s
DOM Advantage” in the August, 1998 issue of Delphi Informant.)
You can be sure the DOM property points to a correct
IHtmlDocument2 interface implementation when the control fires
the OnDocumentComplete event.

I declare the following variables in the form that hosts my DEC:

DocComplete : Boolean;
CommandTarget : IOleCommandTarget;
DOMInterface : IHtmlDocument2;

In the OnDocumentComplete, I obtain the following pointers:

procedure TDHEDForm.DHTMLEdit1DocumentComplete(
Sender: TObject);

begin
DocComplete := True;
DOMInterface := DHTMLEdit1.DOM as IHtmlDocument2;
CommandTarget := DOMInterface as IOleCommandTarget;

end;

CommandTarget provides a way to send commands to the control
via the standard IOleCommandTarget interface.

On the ’Net
Creating a WYSIWYG editor application. To demonstrate DEC’s use
from a Delphi application, and to discuss some of the interesting tech-
niques of working with the control, we’ll develop a simple HTML edi-
tor that uses the control (available for download; see end of article for
details). Our application will be a simple SDI application with a menu
bar, a toolbar, the editing area taken by the edit control, and a status bar.
27 August 1999 Delphi Informant

procedure TDHEDForm.OpenBtnClick(Sender: TObject);
var
pVIn : OleVariant;
Prompt : OleVariant;

begin
pVIn := '';
Prompt := True;
DocComplete := False;
DHtmlEdit1.LoadDocument(pVIn, Prompt);

end;

Figure 2: The code behind the Open button.

procedure TDHEDForm.SaveBtnClick(Sender: TObject);
var

vo, vb : OleVariant;
begin

vo := DHTMLEdit1.CurrentDocumentPath;
if (vo <> '') then

vb := False
else

begin
vo := '';
vb := True;

end;
DHTMLEdit1.SaveDocument(vo, vb);

end;

Figure 3: Code used to implement the Save function.

BoldBtn.Down := ((QueryStatus(DECMD_BOLD) and
DECMDF_LATCHED) = DECMDF_LATCHED);

ItalicBtn.Down := ((QueryStatus(DECMD_ITALIC) and
DECMDF_LATCHED) = DECMDF_LATCHED);

UnderlineBtn.Down := ((QueryStatus(DECMD_UNDERLINE) and
DECMDF_LATCHED) = DECMDF_LATCHED);

CutBtn.Enabled := ((QueryStatus(DECMD_CUT) and
DECMDF_ENABLED) = DECMDF_ENABLED);

CopyBtn.Enabled := ((QueryStatus(DECMD_COPY) and
DECMDF_ENABLED) = DECMDF_ENABLED);

PasteBtn.Enabled := ((QueryStatus(DECMD_PASTE) and
DECMDF_ENABLED) = DECMDF_ENABLED);

Figure 4: Code used to invoke the QueryStatus method.

FontNameStatus := GetCommandStatus(IDM_FONTNAME, False);
FontSizeStatus := GetCommandStatus(IDM_FONTSIZE, False);
if ((FontNameStatus and OleCmdf_Enabled) <> 0) then

begin
HrExecCommand(IDM_FONTNAME, NilVariant,

vo, False, False);
if (VarType(vo) = VarOleStr) then

TEFontNameBox.ItemIndex :=
TEFontNameBox.Items.IndexOf(Vo);

end;
VarClear(vo);
if ((FontSizeStatus and OleCmdf_Enabled) <> 0) then

begin
HrExecCommand(IDM_FONTSIZE, NilVariant,

vo, False, False);
if (VarType(vo) = VarInteger) then

TEFontSizeBox.ItemIndex :=
TEFontSizeBox.Items.IndexOf(vo);

end;

Figure 5: Code used to invoke font name and size boxes.
The toolbar will include file management buttons for File | New, File

| Open, and File | Save, as well as the Cut, Copy, and Paste edit but-
tons, and Undo and Redo. Find and text-formatting buttons that show
the selected text status and can issue commands are also included.
(For our sample we’ll include bold, italic, and underline buttons, font
name and font size drop-down boxes, and an HTML styles box.)

File management. We’ll connect the New button (and the File | New

menu command) to DEC’s NewDocument method. The Open but-
ton is connected to the control’s LoadDocument method, and the
Save button is connected to the SaveDocument method. Figure 2
shows the Open button code.

Parameters are passed to control methods as Variants. We must initial-
ize these parameters before we use them. Notice that we set the
DocComplete object to False. It will be set to True when the control
finishes loading the document and handles the OnDocumentComplete
event we just discussed. The Save function is implemented using the
code shown in Figure 3.

Toolbar and menu format updates. In an edit application, toolbar
controls can usually be in two states: initialization and active. When
the controls are in the initialization state, the tools shouldn’t apply
any changes to the edit control when their values are set. After defin-
ing the global form variable TEIgnoreChange and setting it to True,
the toolbar controls are in initialization state. We initialize the font
names box using the following code in the FormShow procedure:

procedure TDHEDForm.FormShow(Sender: TObject);
begin

TEIgnoreChange := True;
TEFontNameBox.Items.Assign(Screen.Fonts);
TEIgnoreChange := False;

end;

We now need to update the toolbar controls whenever the user
moves the cursor in the application. We need to trap the edit con-
trol’s OnDisplayChange event and update our toolbar display. The
cut, copy, paste, bold, italic, and underline buttons are simple. We
use the QueryStatus method using the code shown in Figure 4. The
font name and size boxes are a bit more complicated (see Figure 5).

GetCommandStatus activates QueryStatus via the IOleCommandTarget
interface. (I just wanted to demonstrate that you can access the
QueryStatus method using a different approach.) We later use the
IOleCommandTarget’s Exec method in HrExecCommand to get the
font name and size and update the listboxes with them. Notice that
when we need to pass a nil value to the Exec command, we use the
variable NilVariant that is defined using the following syntax:

var
NilVariant : OleVariant absolute 0;

When you need to send a null (nil) value to IOleCommandTarget,
IOleCommandTarget expects it to point to a value of 0. The reserved
word absolute does the trick in Delphi.

Updating the HTML Style box is done the same way, with the
exception that if the box has 0 items in it (the first time we
update the selection format settings), we need to fill the box. This
is done with the GetAvailableStyles method, which is worth check-
ing out because it demonstrates how Delphi applications can
access safe arrays (see Figure 6).

procedure TDHEDForm.GetAvailableStyles;
var

varRange : OleVariant;
b : TBStr;
a : PSafeArray;
l, h, i : Longint;
hr : HRESULT;

begin
TVariantArg(VarRange).VT := VT_ARRAY;
TVariantArg(VarRange).ppArray := nil;
hr := HrExecCommand(IDM_GETBLOCKFMTS, NilVariant,

VarRange, False, False);
if (hr = 0) then

begin
l := VarArrayLowBound(VarRange, 1);
h := VarArrayHighBound(VarRange, 1);
a := TVariantArg(VarRange).pArray;
for i := l to h do begin

SafeArrayGetElement(a, i, b);
TEStylesBox.Items.Add(OleStrToString(b));

end;
end;

end;

Figure 6: The GetAvailableStyles method demonstrates how
Delphi applications can access safe arrays.

On the ’Net
A safe array is stored in an OleVariant; unfortunately you need to go
through a couple of hoops to gain access to safe array elements in
Delphi. Because many Visual Basic and other OLE/COM technolo-
gies require parameters (or return results) in safe arrays, it’s useful to
keep this sample around.

The OnDisplayChange event uses the same techniques to update all
the other toolbar buttons and menu commands.

Simple editing commands. We’ll use the DEC’s ExecCommand method
to activate simple commands like cut, copy, and paste. I wrapped the
following call with my own ExecCommand procedure, thus ensuring the
control isn’t busy, and the command I want to execute is valid:

procedure TDHEDForm.ExecCommand;
begin

if (DocComplete) then
if ((QueryStatus(CmdID) and DECMDF_ENABLED) =

DECMDF_ENABLED) then
DHTMLEdit1.ExecCommand(cmdID, cmdExecOpt, pVar);

end;
28 August 1999 Delphi Informant

Figure 7: An image element is positioned absolutely in the sample a
Using ExecCommand is now simple. For example, the following code
will perform the cut operation:

ExecCommand(DECMD_CUT, OLECMDEXECOPT_DODEFAULT, Null);

The undo, redo, and bold commands use the TridentCommand pro-
cedure that calls HrExecCommand (same as the control’s
ExecCommand method, only using the IOleCommandTarget inter-
face). The TridentCommand method allows you more control over
the command parameters. We’ll see a sample of this later when we
discuss table handling.

All other commands exposed under the Edit, Insert, and Format

menus use the same techniques to send a command to the control.

Table commands. Adding table support to a visual editor is a
task most developers would prefer to avoid. If writing a visual
WYSIWYG editor is hard, adding table support complicates it
ten-fold. Fortunately, the DHTML Edit control provides support
for table editing.

The Table menu in our application uses the TridentCommand
method to create tables and insert or delete rows, columns, and
cells, as well as perform operations like cell merging and splitting.
For the table creation function, we take advantage of the
GetInputArg parameter of the TridentCommand method and call an
external method that displays the table attributes dialog. The table
parameters collected in the dialog are packed into a Variant variable,
and passed to the IOleCommandTarget’s ExecCommand method via
the HrExecCommand wrapper in our form source.

Absolute positioning. Traditional HTML is a stream-based layout lan-
guage, such as .RTF and most word processors we have used. Page lay-
out programs use an absolute positioning of elements (see Figure 7).

Trying to combine stream-based content with absolute positioning
of elements in an editing application is hard to do. Word 97 intro-
duced a “graphic” layer on top of the standard content stream (if
you ever tried to position images in Word 97 documents accurately,
you’ll understand how complicated this can be). However, Word has
to deal with printed output where the positioning of graphic ele-
ments in relation to the text stream can vary with different printers.

HTML, on the other hand, was designed for online
document delivery, and DHTML provides the ability to
include absolute positioning of elements with pixel pre-
cision using Cascading Style Sheets. DEC supports this
function, and we’ll include it in our sample application.

DEC can’t position every element on the page
absolutely. Only the following HTML elements can
be positioned absolutely: <APPLET>, <BUTTON>,
<EMBED>, <DIV>, <EMBED>, <HR>, <IFRAME>,
, <INPUT>, <MARQUEE>, <OBJECT>,
<SELECT>, , <TABLE>, <TEXTAREA>,
and <FIELDSET>. Other elements are always part of
the HTML stream.

We determine if an element can be positioned
absolutely using the GetTridentCommandState method
with the IDM_TRIED_MAKE_ABSOLUTE control
command. See the event for the Position menu that
checks for this information.pplication.

procedure TDHEDForm.TranslateAcceleratorHandler;
const

DuplicatedKeys: set of Byte =
[VK_BACK, VK_LEFT, VK_RIGHT, VK_UP, VK_DOWN,
VK_PRIOR, VK_NEXT];

var
iOIPAO: IOleInPlaceActiveObject;
Dispatch: IDispatch;

begin
if (Assigned(DHTMLEdit1)) then

begin
Handled :=

(IsDialogMessage(DHTMLEdit1.Handle, Msg) = True);
if ((Handled) and (not DHTMLEdit1.Busy)) then

begin
if (FOleInPlaceActiveObject = nil) then

begin
Dispatch := DHTMLEdit1.ControlInterface;
if (Assigned(Dispatch)) then

begin
Dispatch.QueryInterface(

IOleInPlaceActiveObject, iOIPAO);
if (Assigned(iOIPAO)) then

begin
FOleInPlaceActiveObject := iOIPAO;
iOIPAO._Release;

end; // Have an active inplace object.
end; // Have dispatch.

end; // Need active inplace object.
if (Assigned(FOleInPlaceActiveObject)) then

if ((Msg.message = WM_KEYDOWN) or
(Msg.message = WM_KEYUP)) and
(Msg.wParam in DuplicatedKeys) then

// Do nothing; don't pass on cursor movement
// keys or they will happen twice.

else
FOleInPlaceActiveObject.

TranslateAccelerator(Msg);
end;

end
else
Handled := False;

end;

Figure 8: The message handler resulting from overcoming
shortcut key problems.

On the ’Net
Absolutely positioned elements have both 2D coordinates (x, y) and
a z-order coordinate. The latter is used to determine which element
will be displayed if more than one element occupies the same area.
Elements that have a closer z-order will have priority and be dis-
played over elements that are farther away.

The Position menu includes a set of menu items that handle the z-
order position of an element, including Send to back, Bring to front,
Send backward, Bring forward, Send behind HTML stream, and Bring

above HTML stream.

The Nudge element option allows you to move an object a specified
number of pixels (you’ll usually just drag and drop the element with the
mouse, but sometimes you need to ensure alignment, etc.), and the Lock

element option allows an object to be locked in place and not be moved
by mistake. When the Constrain element positioning option is checked,
you can move an element in one dimension only. If you start moving
the object up, you will not lose your x-axis placement by mistake.

Fixing Delphi Glitches
DEC is implemented as an ActiveX control that hosts a
DocObject. This isn’t a common way to create controls, and
Delphi’s implementation of control containers (the form code)
doesn’t work with it too well. The clash between Delphi’s imple-
29 August 1999 Delphi Informant
mentation of the embedding code and the control results in
problems with shortcut key activation from within the control
and some functions (most notably the cut, copy, and paste func-
tions) of the control not working correctly.

Fixes to these problems were researched by several developers with the
help of the Microsoft DEC development team, and Henri Fournier
deserves most of the credit to the solutions. To ensure that the cut, copy,
and paste functions work, you need to add the following initialization
and finalization sections to the unit of the form that hosts the control:

initialization
OleInitialize(nil);

finalization
OleUninitialize;

To overcome the shortcut key problems in the form’s OnActivate
event, you’ll need to add the following code to the form’s unit:

procedure TDHEDForm.FormActivate(Sender: TObject);
begin

OldMessageHandler := Application.OnMessage;
Application.OnMessage := TranslateAcceleratorHandler;

end;

and, on deactivation, restore the message handler:

procedure TDHEDForm.FormDeactivate(Sender: TObject);
begin

Application.OnMessage := OldMessageHandler;
end;

The new message handler is shown in Figure 8.

Remember, Microsoft provides DEC free of charge. Your applica-
tion will require that the user’s machine have IE 4.01 or later,
and you’ll need to distribute the triedit.dll and dhtmled.ocx files
that are part of the DEC SDK (which you can download from
http://www.microsoft.com/workshop/author/dhtml/edit).

Conclusion
With the DHTML Edit Control, every application can provide
visual HTML editing capabilities. Delphi is a great choice for appli-
cations that need to use ActiveX controls. And if you’re willing to
get your fingers greasy by using OLE and COM interfaces, you can
take advantage of the powerful capabilities Microsoft provided with
the DHTML Edit Control. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\AUG\DI9908RL.

Ron Loewy is a software developer for HyperAct, Inc. He is the lead developer of
eAuthor Help, HyperAct’s HTML Help authoring tool. For more information about
HyperAct and eAuthor Help, contact HyperAct at (515) 987-2910 or visit
http://www.hyperact.com.

http://www.microsoft.com/workshop/author/dhtml/edit
http://www.hyperact.com

30 August 1999 Delphi Informant

OP Tech
TRect / Windows API

By Motty Adler
Rectangles
A Closer Look at the TRect Windows Data Type

Rectangles are a major part of Windows life. Indeed, all visible VCL components have
Top, Left, Right, and Height properties that form a rectangle. All window objects

in Windows are described as rectangles. Thus, the Windows API has a large group of
functions that use and manipulate rectangles. The Delphi VCL adds many new ways
to use rectangles.
The basic RECT is described by Windows as a
structure of four integers: top, left, bottom, and
right. The following is the C declaration found in
the API Help:

typedef struct _RECT
{

LONG left;
LONG top;
LONG right;
LONG bottom;

} RECT;

In Delphi, this structure is defined as a record of
type TRect. This is its declaration:

TRect = record
case Integer of

// This is the standard part of the
// record.
0: (Left, Top, Right, Bottom: Integer);
// We'll talk about this later.
1: (TopLeft, BottomRight: TPoint);

end;

This article attempts to provide a comprehensive
look at this important Windows data type. It will
detail how and when it’s used. It will also take a short
spin through some API functions — some not wide-
ly known — to show how you can fully utilize TRect.

In its default form, TRect contains the same four
integers: left, top, right, and bottom. It’s generally
similar to RECT, and can be used in one way or
another whenever the API calls for a RECT.

A TRect defines an area bounded by left, top
and right, bottom. This area does not have to
refer to actual window real estate, but can repre-
sent a virtual rectangle as well. The values in the
rectangle are offsets of the top, left. The top,
left of the coordinate system is 0,0, and that
increases as the distance moves down or right.
The size of the rectangle is the difference
between the furthest edge and the closest edge.
For example, if the rectangle is X=25,Y=25 to
X=50,Y=50, then the rectangle is 25 high by 25
wide.

Basic TRect Manipulation
Because rectangles are so important, Windows
has many functions to manipulate and analyze
them. To use a TRect, you declare it in the var
section of a unit or procedure. As with all
Delphi variables, the members of the TRect will
already have random values assigned to them. If
you want to set all the values to zero, you can
set all the members manually, or you can use an
API function named SetRectEmpty, that “emp-
ties” the rectangle. A TRect is considered empty
when there can be no space in it. If the bottom
value is less or equal to the top value, or the
right is less or equal to the left, the rectangle is
considered empty.

SetRectEmpty takes the TRect as a parameter and
changes all its member values to zero. You would
call SetRectEmpty like this:

var
Rec: TRect;

...
begin

SetRectEmpty(Rec);
end;

OffsetRect10,5

20,10

22,15 OffsetRect(-2,-5)

38,35

40,30

Figure 1: InflateRect inflates the rectangle from all sides.

OP Tech
Most API functions will not handle an empty rectangle and will
just ignore it. To determine if a TRect is empty, you can use the
API’s IsRectEmpty function. IsRectEmpty takes the TRect as a para-
meter and returns a Boolean True if the TRect is empty, and a
False if it isn’t.

You can fill the TRect’s members by assigning them directly. For
example:

Rec.Left := 30;

However, the API provides a quicker way to fill the TRect’s mem-
bers. It’s called SetRect, and takes as parameters the TRect and four
signed integers, for top, left, bottom, and right. This frees the pro-
grammer from having to manually fill all the members. Delphi has
an even better way to do this: the Rect function. The Rect function
also takes the four integer parameters, but instead of modifying an
existing TRect, it returns a TRect as its result. Thus, to assign a value
to a TRect, you can use code like this:

Rec := Rect(30,23,173,142);

Because Rect returns a 16-byte array, it has an advantage over the
API function. In the API approach, if you need to use a TRect as a
parameter to a function, you have to declare it, assign the value
using SetRect, then pass the TRect to the function:

function DoSomeTRectThing;
var

Rec:TRect; // We have to define a TRect;
begin

SetRect(Rec, 30, 23, 173, 142);
ProcessTRect(Rec);

end;
31 August 1999 Delphi Informant

IntersectRectIntersectRect

Rect1

Rect2
Figure 2: Overlapping rectangles share a rectangular area, and
IntersectRect fills a TRect with the coordinates of this rectangle.
The Delphi approach allows you to use the Rect function
as a parameter to a procedure:

function DoSomeTRectThing;
begin

ProcessTRect(Rect(0, 23, 173, 142));
end;

Note, however, that this will not work with a function
that wants to modify the value of the TRect, or with a
function that requires a PRect (we’ll discuss this in more
detail later).

Copying the values of one TRect to another can be
done using the CopyRect API function. CopyRect takes
the source and the destination rectangles as parame-
ters. However, because TRect is a standard Delphi
type, all you have to do is assign one TRect to another,

using the assignment operator (:=).

When it comes to comparing TRect objects, Delphi won’t allow a
direct comparison, i.e. with the = operator. So instead of making a
long-winded “if ladder” (if top = top then if left = ... etc.),
you could use the API EqualRect function, which takes the two Rect
objects and returns a Boolean. A call to EqualRect looks like this:

if EqualRect(Rect1, Rect2) then
DoSomething // They are equal.

else
DoSomeThingElse;

To change the width and length of a TRect, you can use the API
InflateRect function. You pass the TRect and the x and y amount of
pixels you want changed. If the value is positive, the rectangle is
enlarged; if it’s negative, the rectangle is made smaller by that amount.

InflateRect inflates the rectangle from all sides. If the TRect you
passed is 10,10 - 20,20, and you passed 5 for x and 10 for y, the
resulting rectangle will be 5, 0, 25, 30 (see Figure 1).

Moving a whole TRect can be done by using the API OffsetRect
function; pass an x and a y to move the TRect by that amount.
OffsetRect adds that amount to each member value so that if you
pass a positive, the rectangle moves to the right and down; if you
pass a negative, it moves left and up.

Advanced TRect Manipulation
The Windows API provides functions for more advanced manipula-
tion of rectangles. The PtInRect function will test if a certain posi-
tion is in a rectangle. PtInRect takes a TRect and a TPoint (also a
Delphi record type, similar to a TRect, and describes only one point
as x and y). If the TPoint is in the TRect, then the PtInRect returns
True; otherwise, it returns False.

Rectangles don’t have to be alone in a coordinate system. You can
have many rectangles floating around in the same virtual space.
Some rectangles may overlap and intersect with others. The
Windows API provides functions that analyze the positions of two
TRect objects in relation to each other, and returns a rectangle that
holds the result.

The following API functions take three parameters. The first is the rec-
tangle to fill with the result; the next two are the rectangles to be ana-

(10,5)

50,35

OP Tech
lyzed. Overlapping rectangles share a rectangular area, and IntersectRect
fills a TRect with the coordinates of this rectangle (see Figure 2).
32 August 1999 Delphi Informant

UnionRect
Rect1

Rect2
Figure 3: You can use the UnionRect function to retrieve a rec-
tangle that fully encompasses both rectangles — even if they
don’t overlap.

Rect2Rect2

Rect1
SubtractRect

Figure 4: The SubtractRect function will return the part of the
second rectangle that is not covered by the first. This can only be
a rectangular area if the second rectangle totally covers the first
in either width or height.

Function Use

CopyRect Copies the values of one TRect to another.
InflateRect Enlarges the rectangle from all sides.
IntersectRect Returns the overlapping area of two rectangles.
IsRectEmpty Determines if a rectangle does not contain

space.
OffsetRect Moves the entire rectangle.
Rect VCL — Sets all the member values at once.
SetRect API — Sets all the member values at once.
SetRectEmpty Sets all the rectangles members to 0.
SubtractRect Returns the area of the first rectangle that is

not covered by the second.
UnionRect Returns the smallest rectangle that can hold

both rectangles.

Figure 5: TRect manipulation functions.

function ScreenToClientRect(Rec: TRect;
Control: TControl): TRect;

begin
Result.TopLeft := Control.ScreenToClient(Rec.TopLeft);
Result.BottomRight :=

Control.ScreenToClient(Rec.BottomRight);
end;

function ClientToScreenRect(Rec: TRect;
Control: TControl); TRect;

begin
Result.TopLeft := Control.ClientToScreen(Rec.TopLeft);
Result.BottomRight :=

Control.ClientToScreen(Rec.BottomRight);
end;

Figure 6: Converting screen and client coordinates.
You can use the UnionRect function to retrieve a rectangle that
fully encompasses both rectangles — even if they don’t overlap
(see Figure 3).

The SubtractRect function will return the part of the second rec-
tangle not covered by the first. This can only be a rectangular
area if the second rectangle totally covers the first in either width
or height, as illustrated in Figure 4. If this is not True, then
SubtractRect ignores the actual subtraction and simply returns the
coordinates of the first TRect. This is something you have to
watch out for because it can mess up your program’s logic. It’s
recommended you test the results using EqualRect (unless that’s
the result you want).

All these functions are demonstrated in the included sample
application (see the end of this article for download details).
Figure 5 is a table with all the rectangle manipulation functions
and their tasks.

Extra TRect Goodies
A TRect is represented in memory as a block of data, 16 bytes
long. This is divided into four integers of 4 bytes each. The
Delphi TPoint is a block of memory 8 bytes long and divided
into two integers describing an x, y position. Two TPoints can fit
into one TRect.

Because a TRect specifies two points, the left, top and the right, bot-
tom, it’s useful that Delphi allows variant parts in a record. Variant
parts allow you to access parts of a record in different ways. Here are
the variant parts, and what they equal:

Rect.Topleft.x = Rect.Left
Rect.TopLeft.y = Rect.Top
Rect.BottomRight.x = Rect.Right
Rect.BottomRight.y = Rect.Bottom

This is helpful in a case where you want a point of the TRect to get
its value from a function that returns a TPoint. For example,
GetCursorPos is an API function that fills a TPoint with the position
of the mouse cursor in screen coordinates. To use the mouse posi-
tion as the bottom-right part of a TRect, you could use this code:

GetCursorPos(MyRect.BottomRight);

Converting Screen Coordinates to Client Coordinates
API functions such as GetCursorPos return coordinates in offsets
from the top left of the screen. To convert a TRect from screen
coordinates to the client coordinates of a window, we can take
advantage of the TRect’s variant parts (TopLeft and BottomRight),
and the TControl.ClientToScreen method. The listing in Figure 6
shows functions that convert screen coordinates to client coordi-
nates, and vice versa.

What Is a PRect?
When you pass a TRect to a function as a parameter, you are passing
a full 16 bytes containing the TRect to the function. This is only a
copy of the original value. The function can inspect the values and
do some action based on it, but it can’t change the original TRect.
This is what the Rect function does. It returns a 16-byte block of
memory containing the values.

However, the calling function cannot change the values (as many
of the API functions want to do). For a function to change the

OP Tech
original TRect, you must pass it as the memory address of the
record. The function can then look at the original TRect and
change its values.

Delphi defines some of the API functions as expecting var TRect.
Internally, whenever the compiler sees a function parameter
declared as a var, it does not pass the actual record, but passes a
memory address to the original record. This is why you can use a
standard TRect to call API functions; all of which want the address
of the TRect. However, some API definitions expect a variable type
named PRect, which is a pointer to a TRect. Delphi 3 or 4 can
show you which type is required with its Code Parameters tool
hint window. To pass a TRect to a function requesting a PRect, you
can use the @ (at) operator before the TRect’s name. The @ opera-
tor causes the variable to which it is prepended to act as a pointer,
and have it passed as an address.

So what is the difference between var TRect and PRect, and why
did Inprise define some parameters as var TRect objects and others
as PRect objects? Well, according to Peter Below of TeamB, it
seems that whenever an API function might require a nil to be
passed to it, the function was defined as a PRect because a var
TRect cannot accept a nil.

TRect in Everyday Life
So why is TRect so important? TRect describes a rectangular area,
and many objects in Windows can be described as rectangles.
Let’s look at some Delphi/API functions that accept TRect objects
as a parameter.

A window is a rectangle, and so are all VCL controls. A TRect can
adequately describe them. Delphi provides the BoundsRect method
for the TControl and its descendants. BoundsRect returns a TRect
describing the position of the control within its parent window.
To get the rectangular area of non-VCL Windows, you can use
the API GetWindowRect, which fills a TRect with the description.

To set the size and position of a VCL control, you can change the
BoundsRect property, or, for a non-VCL window, you can use the
API SetWindowRect function.

The client rectangle of a window is the area not covered by the
Windows border, the menu bar, or any other of the standard
interface objects. To retrieve this rectangle, you can use the
ClientRect property for VCL controls, or the GetWindowRect API
function for others.

Clipping the cursor means that you force the cursor to stay with-
in a certain part of the screen. This is a rectangle that is passed to
the ClipCursor API function. The coordinates for the TRect are in
offsets from the top, left of the screen. For any mouse move-
ment, Windows ensures the mouse pointer does not move out of
the rectangle. Because there is only one shared mouse for the
whole system, the clipping rectangle affects all applications. To
cancel the clipping rectangle, call ClipCursor again, this time
passing it a nil. Because ClipCursor does at times take a nil, it’s
defined as a PRect, so to pass a TRect to ClipCursor, you’ll have
to use the @ operator.

It’s important to make sure that the rectangle you pass to the ClipCursor
is not empty. If it’s empty, the cursor will be stuck in its original posi-
tion and will remain stuck there until it is freed. Therefore, it’s recom-
mended that you test for IsRectEmpty before calling ClipCursor.
33 August 1999 Delphi Informant
MDI (Multiple Document Interface) windows have a mechanism
to cascade all open child windows. There isn’t an easy way to cas-
cade all the top-level windows. You can, however, use the func-
tion that MDI windows use internally to cascade its client win-
dows: the CascadeWindow function. It takes a handle to the par-
ent window. But if the handle is nil, the desktop window is
assumed. You can pass an open-ended array of window handles
to the function, and the function will only cascade those win-
dows. The interesting attribute of this function for our discus-
sion is that you can specify the rectangle in which the windows
will be cascaded to.

TCanvas
Delphi provides the TCanvas property for many of its compo-
nents. TCanvas is an encapsulation of a Windows device context.
Device contexts are objects in Windows that represent the sur-
face of a window or a bitmap. You draw to a window by drawing
to its device context. The device context is essentially a structure
(record) with information about the drawing state of the win-
dow. Pen, brush, and font information are stored in the device
context. All windows use device contexts to draw themselves,
including controls such as list boxes and buttons. Windows pro-
vides a number of functions to draw text and other shapes to a
device context. Delphi encompasses many of these functions into
properties and methods of the TCanvas object. Some compo-
nents (such as the TForm and TImage) automatically surface the
TCanvas property.

Whenever it’s time for a window to redraw itself, Windows sends
a message. Delphi converts this message to the OnPaint event and
the control repaints itself. The graphical drawing routines can
take a long time to execute, and there might be no need to
repaint the whole control simply because a small corner got
uncovered. Indeed, the whole window doesn’t get repainted.
Windows defines something called a Clipping Rectangle. This is
the rectangle to which paint requests will be drawn. Any drawing
out of this rectangle will be ignored.

On a TCanvas, this rectangle can be retrieved using the ClipRect
property. You can also set this property. To determine if a certain
rectangle is part of the clipping region, you can use the
RectVisible function. The TCanvas encapsulates some of the
Windows GDI (Graphics Device Interface) functions that make
them easier to use. I will run through some that are somewhat
related to TRect.

You can copy a whole image onto a TCanvas by using the Draw
method. However, Draw copies the original image in its original
height and width. You can use the StretchDraw method to specify
the destination rectangle. The drawn graphics will be enlarged or
shrunk to fit into the TRect you provided. Even better is the
CopyRect method, which allows you to specify the source rectan-
gle as well.

The TextRect function is like the TextOut function in that it
draws text on to the TCanvas in the specified x and y. But,
TextRect also allows you to specify a clipping rectangle to draw
the text in. Any text that would output outside the bounds of
this rectangle will not be drawn.

It’s easier to handle a rectangle as a TRect than as separate x, y, x,
y values. Most of the shape-drawing functions in Delphi — even
the Rectangle method — take separate x, y, x, y variables. You can

OP Tech

procedure Draw3DBevelFrame(rct:TRect);
begin

with canvas do begin
brush.color := clBtnShadow;
FrameRect(rct);
brush.color := clBtnHighlight;
OffsetRect(rct,-1,-1);
FrameRect(rct);

end;
end;

Figure 7: Drawing a bevel using FrameRect.

// Form-level variables.
var

rec: TRect;

procedure TForm2.FormMouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
rct.TopLeft.x := x; // These will be the origin
rct.TopLeft.y := y; // of the rectangle.
// Erase any BottomRights left from last time.
rct.BottomRight := rct.TopLeft;

end;

procedure TForm2.FormMouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

begin
if not (ssLeft in Shift) then

Exit; // Mouse is not down.
// Erase the last rectangle by drawing over it.
Canvas.DrawFocusRect(rct);
// Set the new bottom-right position.
rct.Bottom := y;
rct.Right := x;
Canvas.DrawFocusRect(rct); // Draw the new rectangle.

end;

procedure TForm2.FormMouseUp(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
Canvas.DrawFocusRect(rct); // Erase for last time.

end;

Figure 8: Implementing a rubber-band box.
still use the TRect to draw a rectangle by using the FrameRect
method. FrameRect draws a rectangle with one-pixel walls using
the brush. To fill a rectangular area using the brush, you can call
the FillRect method. The code listing in Figure 7 shows a quick
way to draw a three-dimensional bevel frame using FrameRect.

When a control has the focus, it’s expected to have some kind of
visual indicator showing this. Most controls draw a dotted rec-
tangle around them. The API has a function DrawFocusRect
that does this, and Delphi encapsulates this as the
DrawFocusRect method. This method draws the dotted line in
an XOR pen; every second pixel is inverted. This allows you to
erase the line by redrawing it again. The listing in Figure 8
shows the procedures you can use to add a rubber-band-style
box to your application.

Drawing with the API
There are many API drawing functions that TCanvas does not
encapsulate. Many of these functions are the ones Windows uses
to draw standard window elements. Because most of these ele-
ments are rectangular, they take TRects as parameters. These func-
tions are hidden gems that most developers don’t know about.

We’ll start off with the function that Windows uses to draw
borders around windows. The DrawEdge function can draw
either a full window border, or only one of the corner edges.
The first parameter is the device context to draw on. The device
context of a VCL window is contained in Canvas.Handle. The
second parameter is a TRect defining the border rectangle. The
third parameter is a group of flags that specify the type of border
to draw, e.g. BDR_RAISEDINNER, EDGE_BUMP, etc. The
fourth parameter is a group of flags that specify what the border
is, e.g. an edge, a full border, etc. Check the API documentation
for DrawEdge.

The DrawFrameControl function is used by Windows to build
almost all the standard controls. This function can draw all the cap-
tion buttons (close, maximize, help, minimize, restore, etc.) or check
boxes and radio buttons. It can also draw scrollbar buttons in all
directions. It can draw the buttons in normal, disabled, or down
states. In other words, this is the Windows-control-drawing work-
horse. It takes a drawing TRect and other parameters that specify the
type of button to draw.

ExtTextOut is the big brother of the VCL’s TCanvas.TextRect, and
allows for many more formatting options. It allows you to justify the
text as right, left, center, top, or bottom. You can also word-wrap
the text in the formatting rectangle.

To draw a line of text surrounded by a three-dimensional box (raised
or lowered), you can use the DrawStatusText API function. This
34 August 1999 Delphi Informant
function was originally intended to allow programs to draw text seg-
ments on status bars, but can draw to any other device context.

Conclusion
Some beginning developers tend to shy away from a procedure
that takes a record, and would rather stick to procedures that
take verbose parameters. They would rather labor over the rec-
tangle method, which takes four integers, than pass a simple
TRect to the FrameRect parameter. In this article, I’ve tried to
show beginners and advanced developers alike that the TRect
isn’t really so frightening, and can even be downright friendly.
Knowing how to use the TRect is the key to using many API
functions. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\AUG\DI9908MA.

Motty Adler is a freelance programmer/consultant and president of WAISS
Systems. He has been developing software for over five years, and has used
Delphi for over two years. He can be reached at aisssoft@aol.com. WAISS
Systems’ Web site is http://www.waiss.com.

http://www.waiss.com

35 August 1999 Delphi Informant

New & Used

By Jeff Sims
Marotz Cost Xpert
Project Maintenance and Cost Estimating

Software development is a scary subject for too many organizations. One of the
biggest problems related to software development projects is estimating how long it

will take and how much money it will cost to create and maintain the software. Cost
Xpert, developed by Marotz, Inc., is a Delphi-developed tool designed to solve that prob-
lem. Marotz offers Cost Xpert as the standard estimating tool for Delphi development.
Typically, developers don’t care to talk about due
dates, software metrics, lines of code, or produc-
tivity. Ask them how long it will take to develop a
system and you’re lucky if they begin by breaking
down the work into measurable, manageable tasks.
The organizations that hire software developers
apparently behave like their developers. Based on
extensive research performed by Marotz on over
8,000 software development projects, “more pro-
jects are doomed from poor cost and schedule esti-
mates than ever succumb to technical, political, or
development team problems.” Some call it our
industry’s dirty little secret.

With a tool like Cost Xpert, however, you have an
important advantage. It can mean the difference
between success and failure for you and your pro-
ject, if not survival and extinction for you and the
organization. No kidding! There are many other
factors contributing to a successful project, but
proper planning, including estimating and sched-
uling, are critical.

Methodical or scientific estimating includes terms
such as SLOC (source lines of code), function
points, GUI metrics, object metrics, lifecycles, stan-
dards, best case, worst case, expected case, coeffi-
cients, metrics, configuration management, etc. It’s
alright if the vocabulary isn’t familiar to you because
Marotz has gone a long way to help the user quickly
become productive with this very powerful product.

Getting Started
Download an evaluation copy of this product and
see how well a tool can be designed using Delphi
as the development tool. The source code isn’t
included, but look at the finished product.
Without this elegant interface, I can’t seriously
imagine someone trying to use a tool that incorpo-
rates so much power. The menus, tabs, sub-tabs,
grids, and other Windows controls are well orga-
nized and arranged for both ease-of-learning and
use. The use of fonts, colors, and boxes doesn’t dis-
tract, but facilitates the user’s understanding.

Another reason to download Cost Xpert is to see
how easy it can be to install software. And if you
get the CD-ROM, you’ll also see how nicely soft-
ware can be packaged. Along with the product,
the CD-ROM includes an insightful narrated
demonstration, some helpful and relevant articles
from TSEPM (Trends in Software Engineering
Process Management, an electronic journal pub-
lished by Marotz), and marketing literature on
Marotz and Cost Xpert. This material helps the
user become productive as soon as possible.

The product is also reliable. It didn’t crash once
during my evaluation. I’ve been running an evalu-
ation copy — which is good for 45 days from the
day you install it — using the demonstration pro-
ject, as well as several of my own, and haven’t
come across any bugs. It stores the project data in
a Paradox database (or, should I say a series of
Paradox tables in a subdirectory using the BDE?).
Cost Xpert will run on a network.

This brings me to a minor complaint. When sav-
ing projects, it lets you use the same project name
more than once. If you choose to keep more than
one version of the same project, I recommend you
give it a different name. I will identify additional
complaints, but nothing is close to a showstopper.

Based on researching 8,000 projects (commercial,
military, and scientific) over a span of 18 years,
Marotz has gathered enough data to make the fol-
lowing claim. Cost Xpert “accurately predicts project
costs within ± 5 percent given accurate inputs and
compares within ± 2 percent to other commercial

New & Used
estimating tools on the market costing $50,000 to $200,000.” It’s out-
side the scope of this review for me to confirm or deny Marotz’s claims,
but I will testify that the estimates produced for me based on my expe-
rience (i.e. completed projects) appear to be remarkably accurate.
36 August 1999 Delphi Informant

Figure 1: The SLOC (source lines of code) productivity table.

Figure 2: An estimation of number of functions, features, mod-
ules, or objects.

Figure 3: The sum or average of varying approaches gives an
accurate result.
A Look Inside the Engine
Cost Xpert supports estimates for over 500 programming languages,
including Delphi versions 1 through 4, and every programming lan-
guage I could imagine (even Paradox!). However, for any project, only

two languages may be included. The estimator must specify a per-
centage when two languages are included. This limitation both-
ered me initially because many projects seem to include more
than two languages (e.g. Delphi, SQL, Java, a report writer, etc.).
One solution is to create multiple project estimates.
Unfortunately, this could become an administrative problem,
especially because you can and may want to output the Cost
Xpert results and import that data into Microsoft Project for
managing the project, and I doubt you would want to administer
two projects. However, when you look up the productivity
assumptions Marotz includes for each language, you might find
that you’re better off grouping the third or fourth language along
with one of the first two (based on the SLOC productivity).

Access the programming language maintenance function (i.e. the
SLOC productivity table) and you’ll see that the Delphi develop-
ment community has enjoyed increasing productivity with each
subsequent release of Delphi (see Figure 1). Using GUI metrics
(where dialog boxes, menu choices, reports, tables, and windows
are how modules are defined), the relative number of SLOC per
module has dropped from 88 to 76, 70, and 64 for each subse-
quent release of Delphi. Contrast this with C++ = 198,
C++Builder = 95, Cobol = 399, Paradox/PAL = 110, and SQL =
48. This information alone is extremely valuable. If someone in
the organization wants to specify C++ as the development lan-
guage (instead of Delphi, for example), then an objective and
unemotional comparison will clearly and tangibly explain the
difference in time and money.

Unfortunately, there are no “complex” or “simple” functions, fea-
tures, modules, or objects. Although a dialog box and a menu
choice, for example, have different metric equivalent values, Cost
Xpert doesn’t distinguish between a complex window module,
which might require three times the code, and a simple window
module. Alternatively, complex modules could be singled out and
specified in the SLOC or feature points (under algorithms, for
example), then added to the GUI metric for a total project estimate.

Practically everything is accessible to the user through the main-
tenance menu, with support to add and modify the parameter
values (project types, lifecycles, languages, etc.). If this sounds
complicated, it could be because the product has tremendous
flexibility. It’s more likely because I only have 2,000 words to
explain this powerful product. Download an evaluation copy
and see for yourself. A demonstration is worth a million words.

Although the product uses industry-standard terms and has
designed the product for ease-of-learning and use, the product
still assumes the estimator has experience in estimating software
development projects. For instance, the estimator needs to be
able to recognize whether a project will require more or less
than the industry standard of 18 percent for system integration.

Volumes
At the heart of an estimate is the number of functions, features,
modules, or objects (see Figure 2). The number of SLOC is
then calculated (alternatively, the estimated SLOC can be
entered directly). There are seven estimating approaches sup-
ported: SLOC, function points, feature points, GUI metrics,

Figure 4: Manipulating project-level parameters.

New & Used
object metrics, bottom up, and top down. It also supports and dis-
tinguishes between new and reused code. And projects can be the
sum or average of more than one of the different approaches (see
Figure 3). This is valuable as different parts of a project are better
estimated using one approach over another. A project doesn’t have
to be just one approach.

Fine Tuning the Estimate
The Constraints page includes eight sliding controls that manipulate a
variety of project-level parameters (see Figure 4). The Time-Cost

Tradeoff, for example, is how you can speed up the delivery while
increasing the cost, or reduce the cost while taking more time.
Unfortunately, there’s no way to specifically limit the number of staff

available during specific
months. It’s only this indirect
slider that increases the length
of the project by 200 percent
and reduces peak staffing lev-
els. We all know that one of
the easiest ways to shorten a
software schedule is to
increase the size of the team.
But this usually makes each
person less efficient. The abil-
ity to limit the size of the
project team and maximize
per-person productivity is
very important, but simply
isn’t supported in Cost Xpert.

Documentation
Part of practically all soft-
ware development projects
today is the requirement to
include documentation.
Even if it’s “shelfware,”
printed documentation is
tangible. More importantly,
users can see, study, and
understand what the analyst
has documented as require-
ments in diagrams and
words. Cost Xpert includes
the standard document

Pros and Cons
Every product has its ups and downs. Cost Xpert is no
exception. Below are some of the good and bad fea-
tures of the product.

PPrrooss
Supports seven estimating approaches
Supports CMM (Capability Maturity Model)
Support for COCOMO II (Constructive Cost Model)
estimating methodology
Support for over 500 programming languages
(with ability to add/change)
Supports military, MIS, systems, and Y2K project
types (with ability to add/change)
Elegant design, ease-of-learning and use
Excellent supplemental material included on CD-ROM
Well-suited to software development methodolo-
gies that produce deliverables in a “waterfall”
Parameter values are user maintainable
Output reports to printer and RTF files
Export estimates/baseline plans to Microsoft
Project for project management

CCoonnss
No explicit support for RAD, iterative, or rapid pro-
totyping methodologies — RAD and 4GL lan-
guages are supported, and additional life cycles
(e.g. iterative) can be added by the user
Limited to two languages per project
All functions, features, modules, or objects are
assumed to be of equal complexity (vs. simple,
medium, and complex functions, for example)
Limited control over staffing levels

— Jeff Sims
37 August 1999 Delphi Informant
types, e.g. software development
plan, software requirement specifica-
tion, system architecture specifica-
tion, general system design, detailed
system design, software test plan, etc.
Based on the volumes input, Cost
Xpert estimates the number of pages
that will be required for each docu-
ment. The user can include or
exclude any one of the documents.

Interestingly, excluding a document
will result in a reduced estimate.
This may seem logical on the sur-
face, but it begs the question: “Why
document anything?” The answer is
because if you don’t document the
system, you’re taking a risk. Not doc-
umenting the system should actually
increase the estimate, because users
are more likely to be dissatisfied with
the finished product. This will result
in revisions that would not have
been necessary if users had seen the
discrepancy earlier (i.e. in a design
document), when the cost to repair the problem was much lower.
For example, reworking a software-requirements problem once the
software is in operation typically costs 50 to 200 times what it
would take to rework the problem in the requirements stage.

Conclusion
Cost Xpert is much like hiring an MBA to help you add the disci-
pline of estimating your project. Like any powerful tool, there is a
risk of misuse: You might be tempted to use the wizards and fill in
the blanks mindlessly and irresponsibly. If you don’t question esti-
mates and closely review all assumptions and work with the product
diligently, you may find that your estimates are ridiculously high and
the projects unaffordable. On the other hand, Cost Xpert is likely to
add the new dimensions of predictability and control to your organi-
zation. When someone wants to change the project scope, you can
go back and estimate the impact. Instead of not knowing what to say
to your client/user, you can calmly explain how much longer and
how much more money the project will now require. I recommend
it, and suggest you download it and see for yourself. ∆

References
Hetzel, Bill. Making Software Measurement Work: Building an
Effective Measurement Program. New York: John Wiley &
Sons, 1993.
Boehm, Barry W., and Philip N. Papaccio. “Understanding and
Controlling Software Costs.” IEEE Transactions on Software
Engineering, SE-15 (July, 1988): 902-916.

Cost Xpert is much like hiring an MBA
to help you add the discipline of esti-
mating your project. It’s likely to add
the new dimensions of predictability
and control to your organization. Easy
installation and collateral material —
including a CD-ROM containing a nar-
rated demonstration, some helpful
and relevant articles from Marotz’s
Trends in Software Engineering
Process Management journal, and
marketing literature — adds greater
usability to the product. I suggest you
download it now.

Marotz, Inc.
13518 Jamul Dr.
Jamul, CA 91935

Phone: (800) 477-6168 or
(619) 660-2010
E-Mail: sales@marotz.com
Web Site: http://www.marotz.com
Price: US$1,995

Jeff Sims is a Northern California-based independent software consultant who
specializes in data and process modeling, business intelligence, project planning,
and project management for Fortune 500 and government clients. He can be
reached at jeff@metagraph.com, or (650) 359-7851.

http://www.marotz.com

38 August 1999 Delphi Informant

New & Used

By Warren Rachele
Advantage Database Server 5.1
Safe Shores for Client/Server Programmers

S calability, thin client, and increased performance are all part of the siren song of
client/server database programming. The allure of these and other genre features

tempt database developers attempting to steer their ships to safety. Getting there, how-
ever, is a complex, arduous process. And just as the mythological sirens led sailors to a
rocky doom, client/server programming can lead to trouble without the aid of a well-
designed and implemented server and engine product.
The Advantage Database Server from Extended
Systems, Inc. provides safe shores for developers in
search of a client/server solution. The core compo-
nent systems of the product, available in a number
of language- and protocol-specific configurations,
comprise two pieces. Primary is the Advantage
Database Server, which resides on a file server acces-
sible by all your client applications. Complementing
this tool are the client-side APIs and visual controls
that implement the communications with the server
and handle database transactions. Access to the
database is BDE-free, talking directly to the data-
base server for all transactions, allowing your appli-
cation to do away with the overhead associated with
the Borland Database Engine.

The Advantage Database Server is a high-perfor-
mance database engine that will run on a Windows
NT or Novell NetWare file server. It supports an
Xbase family of file structures: dBASE III, FoxPro,
Clipper, and Extended’s proprietary file format.
When initiated and running on the server side, all
database transactions are handled by the Advantage
Server. The developer coming from other environ-
ments, such as FoxPro or the BDE, will find this to
be a monumental change.

A networked database application that doesn’t use a
database server, such as a BDE-based project, places
the tables and indices that make up the application
into a shared folder on the file server. By necessity,
all users of the application have permissions and
access to this folder. When data requests are made
of this share, all the data is sent to the requesting
desktop for processing, resulting in an enormous
amount of network traffic and the possibility of
concurrency issues. A database server takes a differ-
ent approach; when your program makes a data
request, the database server accesses the files and the
data is processed on the file server rather than being
sent over the wire to your desktop. Instead of the
raw data, your application sees the results of the
operation, whether it be the display of a result set
or a modification to the records of a table.

Using a database server, the client application is
freed from management issues, such as file or
record locking, and concurrency. Network traffic is
reduced by a large factor, increasing the overall
performance of all network services. Integrity and
performance specific to the database are also vastly
improved. The Advantage Database implements
the integrity operations of the relational database
specification, ensuring that all updates run to com-
pletion, i.e. it supports transaction processing.

The requirements of the client side of the equation
are also changed in a client/server system. In the tra-
ditional multi-user database application, the client is
responsible for data retrieval from the share, and then
the processing of the data locally. These requirements
build a lot of overhead into your application in the
form of API libraries and support DLLs that must be
distributed with the application. The Advantage
client libraries reduce this overhead significantly.

The Advantage Database Server
Extended Systems ships the complete Advantage
solution in two parts: the Advantage Database
Server and the Client Engine Kits. For this review,
I selected the latest version of the Advantage
Database Server for Windows NT, version 5.1 (see
sidebar “Advantage Database Server 5.5” for infor-
mation on the latest release). The target machine
was a Pentium II-based box with 128MB of mem-
ory using Windows NT Server 4.0. The server
installed and initiated flawlessly.

The Advantage Server takes less than 2MB of disk
space, and runs as a Windows NT service. Services

: The Advantage Data Architect is similar to the Borland Database
 in format and usage.

New & Used
are run in the background on the operating system and usually have
no user interface. Such is the case with the Advantage Server.
Through the Task Manager, it’s easy to gather information about
running services, and it showed that the Advantage Server takes
about 4MB of memory to run. The service can be configured to run
automatically when the server is booted or started manually.

The service configuration for this application makes the database
management more robust and secure, especially when configured to
start automatically. If anything happens to the NT server, and a
reboot is required, an automatic startup for the service guarantees
accessibility to the database clients without requiring manual inter-
vention on the part of the NT or database administrator.

Configuring the Advantage Server for maximum performance is sim-
ple, with one caveat. The developer and NT Administrator must have
an understanding of the requirements and limitations of the Advantage
environment before making configuration changes. There are a num-
ber of differences between it and the commonly used Paradox tools,
and these differences come into play in setting the configuration para-
meters for the server. There are two ways of setting these parameters:
on the command line or through the Advantage Configuration Utility.
Configuration settings are stored in the Windows registry and require
the service be stopped and restarted to take effect.

The Advantage Server supports a number of ISAM (Index
Sequential Access Method) file formats. While the server continues
to support the DBF file formats from CA-Clipper, dBASE III+, and
Microsoft FoxPro, new in version 5.1 is support for the proprietary
ADT table format. This higher-performance format is an extension
of the DBF structure and includes additional features, such as:

long field names,
new field data types,
true unique indexes for primary key support,
deleted record re-use,
an increase in maximum number of records and a larger file
size, and
more secure encryption.

The ADT table and associated ADI indexes and ADM memos are
the preferred structure for development of new applications because
they offer the highest performance and a familiar format.

The Advantage Client Engine
The other half of the client/server equation is, of course, the
client. Extended Systems markets client kits for Delphi,
CA-Clipper, FoxPro, and CA-Visual Objects, as well as dri-
vers for ODBC clients. All the client kits intended for
development in the Windows environment use the
Advantage Client Engine for access to the Advantage Server.
In addition to server access, the Client Engine provides a
large measure of scalability, allowing the developer to create
a local database application that doesn’t require the
Advantage Server. After testing, or as needed, the applica-
tion can simply be scaled up by pointing the project to the
remote server; no other changes are necessary to the code.

The Advantage Database Engine for Delphi provides the
developer with a complete set of solutions for accessing
the Advantage Server. The programmer can use the BDE
Alternative, a TDataSet descendant that replaces the Table
component, or access the server directly through the
Advantage Client Engine API with the Advantage Client

Figure 1
Desktop
39 August 1999 Delphi Informant
Engine SDK. Although they contain overlapping functionality, each
of these options targets a specific development activity. The BDE
Alternative replaces the BDE DLLs that can eliminate the need for
the BDE, or allows BDE-specific calls, such as access to a Paradox
table, to pass through to the BDE. The advantage of this model is
that projects can be quickly moved to the Advantage environment,
or a mixture of BDE and Advantage tools, Paradox and Advantage
tables for example, can be used together in the same project. The
BDE Alternative allows the developer to use the Table component,
or Advantage’s AdsTable component for its extended functionality.

The preferred development tool when implementing a true
client/server solution using the Advantage tools is the TDataSet
descendant. This set of native Delphi components simplifies the
connectivity to the Advantage Server. The key to these components
is the AdsTable control that parallels the Table component, and
works with any native or third-party components that require a
TDataSet descendant. By using the AdsTable component, the appli-
cation gains access to the extended functionality of the Advantage
systems; nearly all the methods and properties of the standard Table
are exposed while adding accessing to Advantage-specific properties.

Much as the BDE API allows the developer direct access to the low-
level functions of the Database Engine, the Advantage Client SDK
includes the PAS files necessary to bypass the need to use the visual
controls. Integrating these files into your Delphi application gives
you complete control over access to the Advantage Server. As with
any hand-coded solution, the developer must carefully consider the
balance of the additional work to the increased functionality to
determine if the required effort is worthwhile.

Installation and Configuration
Installation of the Advantage Database Engine for Delphi is straight-
forward. A package file installs itself automatically into the Delphi
IDE without problem. A new Advantage page on the Component
palette is created that contains the three visual components: AdsTable
(that’s been mentioned), AdsSettings, and AdsConnection. The
AdsSettings component encapsulates Advantage-specific parameters
that affect all tables opened in the project. This component allows
your program to control aspects of the database, such as whether
deleted records should be shown, and whether the local, Internet, or
remote server should be used to access the data tables. The
AdsConnection component is available for integrating Advantage

New & Used

Figure 2: The Advantage Remote Management Utility with the
Tabbed display view selected.

Figure 3: A sample project pointed to
the local work directory.
Transaction Processing into an
application and controlling
server connections.

There are a number of periph-
eral utilities used with the
Advantage client/server system.
One of the more important is
the Advantage Data Architect.
As shown in Figure 1, this util-
ity is similar in usage and for-
mat to the Borland Database
Desktop. It can be used to
build and modify tables in a
variety of structures, but its
primary use is to create tables
in the Advantage ADT file for-
mat. Additionally, the utility
can perform data conversions
from Paradox/dBASE, FoxPro,
or Clipper tables to the
Advantage proprietary struc-
ture to take advantage of the
performance and functionality
extensions of the format. Index
and table maintenance, filter-
ing, sorting, and other table-
and database-specific functions
can be accessed through the
Advantage Data Architect tool.

Another utility that comes into
play is the Advantage
Management Utility, which is
used to access information
about the Advantage Database
Server. A deceptively simple
interface gives the developer
the ability to monitor server-
side activity from the desktop.
Figure 2 shows the Remote

Management Utility in action with the Tabbed display view selected.
This gives the user a quick way of reviewing server statistics. Information
available through this interface includes server type and up time, instal-
lation and configuration of the database server itself, open files, commu-
nications statistics, and transaction information.

Using the Advantage Database System
The complexities of a client/server application are nicely encapsulated
by the Advantage system. A developer can easily take advantage of the
scalability designed into this system by starting development locally.
A simple project consisting of a form, an AdsTable, a DataSource,
and a DBGrid is all that’s needed to demonstrate this faculty. Adding
the AdsTable to the form, point the DatabaseName property to a local
directory for development purposes. The full set of capabilities for the
Advantage Server are present in the Local Server services. Figure 3 is a
sample project that is pointed to the local work directory. The project
can be fully developed and tested at the local level, then simply scaled
up by modifying the database name to point to a network share rec-
ognized by the Advantage Server.

Obviously, such a simple exercise is a trivial examination of the capa-
bilities of the Advantage system. Equally likely to occur on the pro-

Advantage Database Server 5.5
Already a strong performer in the PC client/server data-
base market, the Advantage Database Server and
Client kits receive a major upgrade with the version 5.5
release. At press time, this upgrade was due to be
released in early to mid-summer and looks like a
must-have for any Advantage developer. The develop-
ers at Extended Systems have followed their success
with the Database Engine for Delphi by extending the
functionality of the product into the SQL arena.

The Advantage Database Server gains a SQL engine
that supports a subset of the ANSI-92 SQL specifica-
tion. These new relational capabilities are tightly inte-
grated with Advantage’s existing functionality and offer
a high measure of data integrity. The new functions
apply the same design already familiar to Advantage
developers, making it easy to implement the new func-
tions into existing applications.

This functionality is delivered via a new component
named AdsQuery. As with the AdsTable control, the new
query component is a parallel object to Delphi’s native
Query component. This new control is descended from
TDataSet and allows developers to submit queries and
other SQL commands through a familiar interface. If a
result set is returned, the cursor handle can be used to
navigate the dataset in a table-like fashion, row-by-row
— a feature missing from many SQL implementations.

One of the benefits of the Advantage client/server sys-
tem is its ability to easily scale up or down. This gives
the developer the opportunity to build and test an
application locally, using the full feature set. When the
roll-out date arrives, the application is simply pointed
to the file server running the Advantage Database ser-
vice to realize a fully functioning client/server applica-
tion. This scalability benefit remains in place with the
new components and API functions.

The 5.5 release includes a more robust encryption
function, making security even better within the
Advantage tool set. Other minor improvements, such as
Memo recycling, which makes more efficient use of file
space, are also realized in this incremental release.

— Warren Rachele
40 August 1999 Delphi Informant
ject continuum is the conversion of an existing single- or multi-user
database to a client/server application. By descending the main data
access object from a DataSet component, nearly every method and
property is paralleled in the AdsTable and Table components. This
design makes it a simple matter to substitute the Advantage control
on a one-to-one basis for each incidence of the Table component,
without having to change any other parts of your application.

As a test of how transparent this process could be, I took an existing
Paradox-based application and attempted to convert the entire project
to an Advantage Server-based program. Before jumping into the Delphi
environment, I paralleled the database on the server as an Advantage
proprietary ADT database. This process was easily completed through
the Advantage Data Architect Utility. Selecting the Import option, I pro-
vided the target and destination directory and share as appropriate,
then the needed data type information. Clicking on Execute completed
the process, giving me an entirely new database on my server.

The next step in this conversion process was to modify the application
itself. Depending on the original design of the application, this may be a

New & Used
complex or trivial
process. In the pro-
ject that I chose,
the data tables are
contained within a
Data Module, cen-
tralizing and limit-
ing the number of
parallel tables that
needed to be creat-
ed. Within the
Data Module,
shown in Figure 4,

I started by adding AdsTable components on a one-to-one basis for each
Table component in the module. Being cautious, I converted one at a
time and tested the application in between. The new AdsTable compo-
nents were named in a similar fashion, and the DatabaseName property
was pointed to the server share. The connection was made without a
hitch, and when I clicked on the TableName property to specify the
table, I was greeted by a list of all the converted objects. Having done
that, I made the table active, and proceeded to test the application. The
process completed without incident. In fact, the application was able to
run with both the Advantage Server table and the remaining BDE-
based tables active during the testing process, demonstrating that the
two types of tables, ADT and Paradox, are able to co-exist. Developers
hesitant to consider moving to the Advantage Database Server might
reconsider, given the ease of the transition with their current and pro-
duction projects. After the initial transition of getting the application to
work with the Database server, the developer can then consider utilizing
the advanced features exposed by the Advantage tools.

Transaction Processing is one of those advanced features most likely
to catch a developer’s attention. Transaction processing is built
around the concept that a database should always be able to main-
tain a specific state, regardless of the status of operations occurring
upon it. In other words, all insert, update, or delete operations will
be completed, or no part of the operation will occur. This prevents
the database from reflecting partially successful updates and destroy-
ing the integrity of the data. While it’s possible for this corruption
to occur in a single-user environment, it has an even greater proba-
bility when the database is accessed through a network connection.
The connectivity alone introduces a number of points of failure into
the equation, making the protection of the data integrity even more
critical. With a full pallet of commit and rollback features, the
Advantage Transaction Processing System brings this critical func-
tionality to the Xbase development arena.

Conclusion
Some Delphi developers already have a client/server database subset
at their disposal through the InterBase tools and components
included with their development tool. To fully implement this prod-
uct is an expensive and complex process with a long learning curve.
The Advantage Database Server, on the other hand, is built around
the familiar at a far lower cost of entry. Developers immersed in the
Xbase school of development will recognize the parallel concepts
immediately, and therefore, have a leg up on learning the advanced
features. Delphi developers will be comfortable with the compo-
nents, especially the immediate usefulness of AdsTable.

On the other hand, the Advantage Database Server is made unnecessari-
ly complex by a lack of clear and immediately available documentation.
The printed manuals that come with the Server and Client packages are
easily dismissed because they provide little in the way of implementa-

Figure 4: The Data Module.
41 August 1999 Delphi Informant
tion information. For that, the devel-
oper is referred to examples that exist
only on the Extended Systems Web
site, or he or she must delve into the
online documentation. Online docu-
mentation works best in situations
where the user already knows what
they are looking for, and can proceed
through the layers of links in a linear
fashion to locate it. If you’re looking
for an item, however, on which you
and the documentation writer do not
share similar vocabulary, you’ll end
up wading through endless Help
screens and abandoning the process
in frustration.

Getting started with a new product
such as the Advantage Server and
Client kits should not be this way.
Clearly printed documentation
should, at a minimum, be included
that makes your first experiences
with the product a success. An
example of how this would save
enormous time comes immediately
to mind. The BDE developer will immediately think of an Alias when
setting the database name in the AdsTable component. Without clear
instructions explaining that this is not the case with the Advantage
product, the developer will waste an enormous amount of time
searching for this answer. Another question of this type is simply how
to create an ADT table. You must dig deep to identify the Advantage
Data Architect as the solution to this question. Considerations such as
this are often difficult for a company to see when all documentation is
developed in-house. Familiarity with the product sometimes takes the
focus away from the user’s perspective, where it belongs.

The performance of the Advantage Database Server is exemplary.
Although none of the test projects came close to testing the outer
boundaries of the capability of the product, it performed without com-
plaint, no matter how flawed my commands might have been. Any
errors that occurred were fully documented in the included Help files
and were easily corrected. Installation and startup of the server was per-
fect and, aside from some upgrade problems of my own making, the
installation of the Delphi side of things went without problems as well.

With the lower cost and system requirements for the Advantage
Database Server, and the benefits of the Advantage Database Engine for
Delphi on the client side, this product is an excellent choice for pro-
grammers wishing to move up to client/server functionality. It works
well, integrates easily into existing projects, and offers a number of
advanced features that make it more desirable than competing tools. ∆

With the lower cost and system require-
ments for the Advantage Database
Server, and the benefits of the Advantage
Database Engine for Delphi on the client
side, this product is an excellent choice
for programmers who wish to move up to
client-server functionality. It works well,
integrates easily into existing projects,
and offers a number of advanced features
that make it more desirable than compet-
ing tools. Although the Advantage
Database Server is made unnecessarily
complex by a lack of clear and immedi-
ately available documentation, its perfor-
mance is exemplary.

Extended Systems, Inc.
5777 N. Meeker Ave.
Boise, ID 83713

Phone: (800) 235-7576
Web Site: http://www.
advantagedatabase.com
Price: From US$615 for the five-user,
Windows NT and NetWare versions, to
US$7,495 for the unlimited version. Client
kit prices range from US$99 to US$299.

Warren Rachele is Chief Architect of The Hunter Group, an Evergreen, CO software
development company specializing in database-management software. The com-
pany has served its customers since 1987. Warren also teaches programming,
hardware architecture, and database management at the college level. He can be
reached by e-mail at wrachele@earthlink.net.

http://www.advantagedatabase.com
http://www.advantagedatabase.com

File | New
Directions / Commentary
The Delphi Bookshelf: Multimedia Sources

In the March, 1999 issue of Delphi Informant, I presented an overview of the Windows Multimedia APIs. I wrote that,
although these APIs have been a part of Delphi since the beginning, their documentation leaves a lot to be desired. It’s

true that every function and structure is described in the Help file. The problem comes when you try to put all those func-
tions together in a working application. I also indicated in that column that I’m writing a book on this topic, The Tomes of
Delphi, 32-bit Multimedia Programming, which will be published by Wordware this summer (1999). In the process of writing
this book, I have relied on various resources, including books and Web sites. This month, I’d like to provide an overview of
some of the books I found most helpful; one is Delphi-specific, the others are for C/C++ developers.
Delphi 2 Multimedia Adventure Set by Scott Jarol, Dan Haygood,
and Chris Coppola [Coriolis Group Books, 1996] is the only
Delphi book I’m aware of that deals in any comprehensive way with
the topic of multimedia. One of the interesting features of this book
is the HTML application (Web Browser and Hypertext Engine) that
constitutes one of its major threads. This aspect has been controver-
sial: Some developers love it; others feel HTML shouldn’t be in a
multimedia book. I found the sections on the multimedia APIs very
helpful. These include excellent (though incomplete) introductions
to the WAVE API, the MIDI API, and MCI (Media Control
Interface). These chapters are particularly helpful in providing a
context in which to use the functions in mmsystem.pas.

Part of the Waite Group’s three-volume Win32 Bible series edited by
Richard J. Simon, Windows 95 Multimedia & ODBC API Bible
[Waite Group Press, 1996] presents a thorough overview of
Windows’ current support for multimedia, telephony, and Open
Database Connectivity (ODBC). The multimedia chapters comprise
nearly half the book, and provide a comprehensive exposition of all
the constants, structures, and functions in the Windows multimedia
APIs. This book is indispensable. The explanations are clear and
concise, and the C examples provided excellent models for my own
example applications (some of which you’ll be seeing in Delphi
Informant in coming months).

Steve Rimmer’s Advanced Multimedia Programming [Windcrest
Books, 1994] is another useful C-oriented book. Rather than con-
centrating exclusively on the Windows multimedia APIs, this work
deals with other techniques often associated with multimedia,
including animation. It also includes sections on programming joy-
sticks and .AVI video files, topics not always included in multimedia
works. I found the sections on WAVE files and MIDI particularly
helpful. However, both topics are so complex that one could write
an entire book about each. Which brings us to our last two books.

A Programmer’s Guide to Sound by Tim Kientzle [Addison-Wesley,
1997] is a real gem. This book is essential if you’re working with
42 August 1999 Delphi Informant
multimedia on multiple platforms (particularly Windows,
Macintosh, and UNIX). Delphi developers who have a background
in C++ will appreciate Kientzle’s object-oriented approach, building
many small classes that become the basis of larger, more useful class-
es. The introductory material on sound is excellent and will prove
very helpful to developers who don’t have a strong background in
acoustics and psycho-acoustics. As you would guess, the sections on
Waveform audio and MIDI are excellent. However, this book goes
further, effectively introducing some lesser-known audio file types.

Last, but certainly not least, Paul Messick’s Maximum MIDI
[Manning Publications Co., 1997] is a seminal work on program-
ming MIDI. In many ways, this may be the most helpful book of all
if you’re looking for MIDI tools you can easily incorporate into your
applications. In addition to providing a comprehensive overview of
MIDI, Maximum MIDI develops a library of MIDI routines, the
MaxMidi.dll (in both 16- and 32-bit formats), with all the source
code included. Messick also develops MIDI informational tools and
a MIDI sequencer.

In addition to my work with multimedia, I have researched telepho-
ny, as well as other forms of communication under Windows. In a
future column, I’ll discuss some of the resources I found helpful in
those ventures, including the Internet, which provides a wealth of
resources. As always, I look forward to hearing from you with your
suggestions and information. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, special-
izing in music composition and music theory. He has been developing
education-related applications with the Borland languages for more than
10 years. He has published a number of articles in various technical
journals. Using Delphi, he specializes in writing custom components and
implementing multimedia capabilities in applications, particularly
sound and music. You can reach Alan on the Internet at
acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	PracticalSoft Releases Components for Delphi
	Blaise Announces Blaise Compound Components
	SmartLine Releases DeviceLock
	Pervasive Delivers Crystal Reports 7 for Pervasive
	IDEAL Ships Virtual Print Engin 3.0
	Discmatic Offers Multi-drive Duplicators
	Epsilon Squared Releases InstallWatch 1.1
	Xceed Announces Xceed Zip Compression Library Version 4.0
	DBI Technologies Announces Solutions::Explorer 1.0
	Albert’s Ambry Presents BlackBoard Backup 5.9
	Softel Releases SftTree/VCL 4.0

	On the Cover
	Enhanced IDE
	TeamSource
	To-Do Lists
	New Frame Containers
	Database Enhancements
	Internationalization
	DFM Resources as Text
	Control Over Auto-created Forms
	Web Component Updates
	COM Enhancements
	Other Enhancements
	Conclusion

	On the Cover
	Object Inspector Enhancements
	Debugging Enhancements
	Conclusion

	Informant Spotlight
	New Events, Properties, and Components
	No More IProvider
	No More TProvider
	TSocketConnection Changes
	RDM Pooling
	Threaded Server Changes
	Introducing TWebConnection
	Web MIDAS Client
	Miscellaneous Changes
	Conclusion

	The API Calls
	Understanding the Hierarchy
	Examining the Code
	Conclusion
	Begin Listing One — UNetResources.pas

	On the 'Net
	The DHTML Edit Control Architecture
	The DHTML Edit SDK
	Installing DEC
	Fixing Delphi Glitches
	Conclusion

	OP Tech
	Basic TRect Manipulation
	Advanced TRect Manipulation
	Extra TRect Goodies
	Converting Screen Coordinates to Client Coordinates
	What Is a PRect?
	TRect in Everyday Life
	TCanvas
	Drawing with the API
	Conclusion

	New & Used
	Getting Started
	A Look Inside the Engine
	Volumes
	Fine Tuning the Estimate
	Documentation
	Conclusion
	References

	New & Used
	The Advantage Database Server
	The Advantage Client Engine
	Installation and Configuration
	Using the Advantage Database System
	Conclusion

	File I New

